Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #4 Mar 30 2012 18:36:44
%S 1,1,-3,23,-525,2695,-29687,191991,-10488701,70977675,-968279181,
%T 6752850945,-191225421641,1363019302883,-19538003443615,
%U 140961586090743,-16379289413266717,119621607825995891,-1755802638936696081,12944528671963135869,-383361262914445548739
%N G.f.: A(x) = Sum_{n>=0}a(n)/2^A004134(n)*x^n = limit_{n->oo} F(n)^(1/2^(n+1)) where F(n) is the n-th iteration of: F(0) = 1, F(n) = F(n-1)^2 + x^(2^n-1) for n>=1.
%C Although the power series for the g.f. A(x) diverges at x=1, the Euler transform of the power series A(x) at x=1 converges to the constant A076949: Sum_{n>=0}[Sum_{k=0..n}C(n,k)*a(k))/2^A004134(n) ]/2^(n+1) = 1.2259024435...
%F G.f. A(x) satisfies: A(x)^2 = Sum_{n>=0} A101190(n)/2^A005187(n)*x^n. G.f. A(x) satisfies: A(2*x)^4 = Sum_{n>=0} A101189(n)*(2x)^n.
%e The iteration begins:
%e F(0) = 1,
%e F(1) = F(0)^2 + x^(2^1-1) = 1 +x,
%e F(2) = F(1)^2 + x^(2^2-1) = 1 +2*x +x^2 +x^3,
%e F(3) = F(2)^2 + x^(2^3-1) = 1 +4*x +6*x^2 +6*x^3 +5*x^4 +2*x^5 +x^6 +x^7.
%e The 2^(n+1)-th roots of F(n) tend to the limit of the g.f.:
%e F(1)^(1/2^2) = 1 +1/4*x -3/32*x^2 +7/128*x^3 -77/2048*x^4 +231/8192*x^5 +...
%e F(2)^(1/2^3) = 1 +1/4*x -3/32*x^2 +23/128*x^3 -525/2048*x^4 +2695/8192*x^5 +...
%e F(3)^(1/2^4) = 1 +1/4*x -3/32*x^2 +23/128*x^3 -525/2048*x^4 +2695/8192*x^5 +...
%e The limit of this process is the g.f. A(x) of this sequence.
%e The coefficients of x^k in the 2^n powers of the g.f. A(x) begin:
%e A^(2^0)=[1,1/4,-3/32,23/128,-525/2048,2695/8192,-29687/65536,...],
%e A^(2^1)=[1,1/2,-1/8,5/16,-53/128,127/256,-677/1024,2221/2048,...],
%e A^(2^2)=[1,1,0,1/2,-1/2,1/2,-5/8,9/8,-2,53/16,-89/16,155/16,...],
%e A^(2^3)=[1,2,1,1,0,0,0,1/2,-1,3/2,-5/2,9/2,-8,14,-197/8,44,...],
%e A^(2^4)=[1,4,6,6,5,2,1,1,0,0,0,0,0,0,0,1/2,-2,5,...],
%e A^(2^5)=[1,8,28,60,94,116,114,94,69,44,26,14,5,2,1,1,0,0,...].
%e Note: the sum of the coefficients of x^k in F(n) equals A003095(n+1):
%e 1, 2=1+1, 5=1+2+1+1, 26=1+4+6+6+5+2+1+1, ...
%e The last n coefficients in F(n) read backwards are Catalan numbers (A000108).
%o (PARI) {a(n)=local(F=1,A,L);if(n==0,A=1,L=ceil(log(n+1)/log(2)); for(k=1,L,F=F^2+x^(2^k-1)); A=polcoeff(F^(1/2^(L+1))+x*O(x^n),n));numerator(A)}
%Y Cf. A101189, A101190, A005187, A003095, A076949.
%K sign
%O 0,3
%A _Paul D. Hanna_, Dec 03 2004