Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Jan 17 2019 13:44:06
%S 0,1,2,5,7,17,18,20,31,47,64,71,98,119,200,307,716,967,1343,2131,3566,
%T 3967,8326,10597,12464,15874,18894,28610,29417,83692
%N Indices of primes in sequence defined by A(0) = 79, A(n) = 10*A(n-1) - 21 for n > 0.
%C Numbers n such that (690*10^n + 21)/9 is prime.
%C Numbers n such that digit 7 followed by n >= 0 occurrences of digit 6 followed by digit 9 is prime.
%C Numbers corresponding to terms <= 967 are certified primes.
%D Klaus Brockhaus and Walter Oberschelp, Zahlenfolgen mit homogenem Ziffernkern, MNU 59/8 (2006), pp. 462-467.
%H Makoto Kamada, <a href="https://stdkmd.net/nrr/7/76669.htm#prime">Prime numbers of the form 766...669</a>.
%H <a href="/index/Pri#Pri_rep">Index entries for primes involving repunits</a>.
%F a(n) = A103065(n) - 1.
%e 7669 is prime, hence 2 is a term.
%t Select[Range[0, 100000], PrimeQ[(690*10^# + 21)/9] &] (* _Robert Price_, Oct 08 2015 *)
%o (PARI) a=79;for(n=0,1500,if(isprime(a),print1(n,","));a=10*a-21)
%o (PARI) for(n=0,1500,if(isprime((690*10^n+21)/9),print1(n,",")))
%Y Cf. A000533, A002275, A103065.
%K nonn,hard,more
%O 1,3
%A _Klaus Brockhaus_ and Walter Oberschelp (oberschelp(AT)informatik.rwth-aachen.de), Dec 03 2004
%E More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 01 2008
%E a(28)-a(29) from Kamada data by _Ray Chandler_, Apr 30 2015
%E a(30) from _Robert Price_, Oct 08 2015