login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A101054
E.g.f.: exp(exp(x)-1)/(1-x)^2.
4
1, 3, 12, 59, 343, 2302, 17537, 149711, 1417444, 14755947, 167664955, 2066153410, 27460121377, 391670868279, 5969233120520, 96827494235555, 1665874346755107, 30302732222472482, 581141491978752769, 11719848107849221435, 247960209086201040552, 5491993051193586857235
OFFSET
0,2
COMMENTS
Sequence appears in the problem of normal ordering of functions of boson operators.
LINKS
FORMULA
a(n) = ((-1)^n*n!/e)*Sum_{k>=0} L(n,-n-2,k)/k!, where L is a generalized Laguerre polynomial.
a(n) = Sum_{k=0..n} binomial(n,k)*(k + 1)!*Bell(n-k), where Bell() = A000110. - Ilya Gutkovskiy, May 24 2018
a(n) ~ exp(exp(1)-1) * n * n!. - Vaclav Kotesovec, Jun 26 2022
MAPLE
egf := exp(exp(x)-1)/((1-x)^2);
seq(n!*coeff(series(egf, x, n+1), x, n), n=0..21); # Peter Luschny, Sep 17 2014
MATHEMATICA
With[{nmax = 50}, CoefficientList[Series[Exp[Exp[x] - 1]/(1 - x)^2, {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, May 23 2018 *)
PROG
(PARI) x='x+O('x^30); Vec(serlaplace(exp(exp(x)-1)/(1-x)^2 )) \\ G. C. Greubel, May 23 2018
(Magma) m:=25; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(Exp(x)-1)/(1-x)^2)); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 23 2018
CROSSREFS
Sequence in context: A196710 A196711 A304788 * A122752 A020102 A277179
KEYWORD
nonn
AUTHOR
Karol A. Penson, Nov 29 2004
STATUS
approved