|
|
A101034
|
|
Numbers n such that A002113(n) is a triangular number.
|
|
0
|
|
|
0, 1, 3, 6, 14, 15, 26, 68, 75, 129, 158, 186, 249, 759, 1616, 1827, 2268, 2679, 4543, 6072, 6675, 7294, 13512, 16146, 27871, 112640, 116339, 152889, 161727, 239533, 260487, 404161, 670038, 685744, 767718, 973504, 2313206, 6250177, 6977617
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
Indices of triangular numbers in the sequence of palindromes.
|
|
LINKS
|
|
|
EXAMPLE
|
A002113(26) = 171 is a triangular number, so 26 is a term.
|
|
MATHEMATICA
|
Join[{0}, Flatten[Position[Select[Range[10^7], PalindromeQ], _?(OddQ[Sqrt[ 8#+1]]&)]]] (* The program generates the first 22 terms of the sequence. *) (* Harvey P. Dale, Jun 17 2022 *)
|
|
PROG
|
(ARIBAS) var c, n, m:integer; end; begin c:=0; for n:=0 to 100000000 do if n = intreverse(n) then m:=floor(sqrt(2*n)); if m*(m+1) div 2 = n then write(c, ", "); end; inc(c); end; end; end;
(PARI) {c=0; for(n=0, 10000000, k=n; r=0; while(k>0, d=divrem(k, 10); k=d[1]; r=10*r+d[2]); if(n==r, m=sqrtint(2*n); if(m*(m+1)/2==n, print1(c, ", ")); c++))}
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|