login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows giving the coefficients of general sum formulas of n-th Lucas numbers (A000204). The k-th row (k>=1) contains T(i,k) for i=1 to 2*k-1, where T(i,k) satisfies L(n) = Sum_{k=1..n} Sum_{i=1..2*k-1} T(i,k) * C(n-k,i-1) * n^(n-k) / (n-1)!.
5

%I #11 Jul 07 2016 23:54:48

%S 1,1,-2,-3,2,15,51,65,27,6,-148,-945,-2292,-2776,-1680,-405,24,2290,

%T 19580,71965,145525,175244,125950,50085,8505,120,-41676,-473072,

%U -2340400,-6676835,-12132890,-14587261,-11619692,-5290005,-1752030,-229635,720,943908,13132532,81977672,303352938,740797855

%N Triangle read by rows giving the coefficients of general sum formulas of n-th Lucas numbers (A000204). The k-th row (k>=1) contains T(i,k) for i=1 to 2*k-1, where T(i,k) satisfies L(n) = Sum_{k=1..n} Sum_{i=1..2*k-1} T(i,k) * C(n-k,i-1) * n^(n-k) / (n-1)!.

%H Ron Knott, <a href="http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/lucasNbs.html">The Lucas Numbers in Pascal's Triangle</a>.

%e L(7)= (1/(7-1)!) * [ 7^(7-1) -{-1+2*(7-2)+3*C(7-2,2)}*7^(7-2) +{2+15*(7-3)+51*C(7-3,2)+65*C(7-3,3) +27*C(7-3,4)}*7^(7-3) -{-6+148*(7-4)+945*C(7-4,2)+2292*C(7-4,3)}*7^(7-4) +... ]

%e = (1/6!) * [ 7^6 -{-1+10+30}*7^5 +{2+60+306+260+27}*7^4 -{-6+444+2835+2292}*7^3 +{24+4580+19580}*7^2 -{-120+41676}*7 +{720} ] = (1/6!) * [ 7^6 -39*7^5 +655*7^4 -5565*7^3 +24184*7^2 -41556*7 +720 ]

%e = (1/720) * [ 117649 -655473 +1572655 -1908795 +1185016 -290892 +720 ] = 20880/720 = 29.

%Y Cf. A101032, A000204, A100492, A099731, A000045, A094216, A094638, A000108.

%K easy,sign,tabl

%O 1,3

%A _André F. Labossière_, Nov 30 2004