Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #6 Jan 09 2013 16:41:38
%S 1,6,3,92,5,90,7,5880,9,630,11,23028,13,3570,15,6021104,17,18414,19,
%T 2580460,21,90090,23,377290728,25,425958,27,233963492,29,1966050,31,
%U 1578396286944,33,8912862,35,19308478428,37,39845850,39,108
%N Number of totally ramified extensions over Q_2 with degree n in the algebraic closure of Q_2.
%D M. Krasner, Le nombre des surcorps primitifs d'un degre donne et le nombre des surcorps metagaloisiens d'un degre donne d'un corps de nombres p-adiques. Comptes Rendus Hebdomadaires, Academie des Sciences, Paris 254, 255, 1962
%F a(n)=n*(sum_{s=0}^m p^s*(p^(eps(s)*n)-p^(eps(s-1)*n))), where p=2, n=h*p^m, with gcd(h, p)=1, eps(-1)=-infinity, eps(0)=0 and eps(s)=sum_{i=1 to s} 1/(p^i)
%e a(2)=6 There are 6 ramified extensions with minimal polynomials x^2+2, x^2-2, x^2+6, x^2-6, x^2+2x+2, x^2+2x+6, there is another one by x^2+x+1, but this is unramified.
%p p:=2; eps:=proc()local p,s,i,sum; p:=args[1]; s:=args[2]; if s=-1 then return -infinity; fi; if s=0 then return 0; fi; sum:=0; for i from 1 to s do sum:=sum+1/p^i; od; return sum; end: ppart:=proc() local p,n; p:=args[1]; n:=args[2]; return igcd(n,p^n); end: qpart:=proc() local p,n; p:=args[1]; n:=args[2]; return n/igcd(n,p^n); end: logp:=proc() local p, pp; p:=args[1]; pp:=args[2]; if op(ifactors(pp))[2]=[] then return 0; else return op(op(ifactors(pp))[2])[2]; fi; end: summe:=0; m:=logp(p, ppart(p,n)); h:=qpart(p,n); for s from 0 to m do summe:=summe+(p^s*(p^(eps(p,s)*n)-p^(eps(p,s-1)*n)); od; a(n):=n*summe;
%Y Cf. A100976, A100977, A100978, A100980, A100981, A100983, A100984, A100985, A100986.
%K nonn
%O 1,2
%A Volker Schmitt (clamsi(AT)gmx.net), Nov 25 2004