login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = L(P(n)), where P = A000041 (partition numbers) and L = A000032 (Lucas numbers).
2

%I #18 Sep 08 2022 08:45:15

%S 1,1,3,4,11,29,199,1364,39603,1860498,599074578,505019158607,

%T 12360848946698171,1281597540372340914251,

%U 16342986943522226847837781364,6050965600552329018623146299409643807,1888621362467059762119226660462223993033685748724

%N a(n) = L(P(n)), where P = A000041 (partition numbers) and L = A000032 (Lucas numbers).

%H Seiichi Manyama, <a href="/A100845/b100845.txt">Table of n, a(n) for n = 0..29</a>

%F a(n) = A000032(A000041(n)). - _David Wasserman_, Mar 04 2008

%e If n=4, L(P(4)) = 11.

%e If n=8, L(P(8)) = 39603.

%t Table[LucasL[PartitionsP[n]], {n, 0, 20}] (* _Vincenzo Librandi_, May 09 2016 *)

%o (Magma) [Lucas(NumberOfPartitions(n)): n in [0..20]]; // _Vincenzo Librandi_, May 09 2016

%K nonn

%O 0,3

%A _Parthasarathy Nambi_, Jan 07 2005

%E More terms from _David Wasserman_, Mar 04 2008

%E Edited and offset changed by _Bruno Berselli_, May 09 2016