Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Jan 18 2019 01:24:08
%S 2,3,8,7,24,17,48,31,80,49,120,17,168,97,26,127,288,161,360,49,197,
%T 241,528,127,624,337,728,97,840,199,960,511,485,577,99,161,1368,721,
%U 170,351,1680,197,1848,241,649,1057,2208,127,2400,1249,577,337,2808,1457,1451
%N a(n) is the smallest value k > 1 such that k^2 - 1 is divisible by n^2.
%C a(n) = n^2 - 1 if n > 1 is in A235868. - _Robert Israel_, Jan 17 2019
%H Robert Israel, <a href="/A100836/b100836.txt">Table of n, a(n) for n = 1..10000</a> (first 500 terms from Harvey P. Dale)
%e a(4)=7 because 7^2 - 1 is divisible by 4^2 (and 7 is the smallest integer > 1 that satisfies this criterion).
%p f:= n -> min(map(t -> rhs(op(t)),{msolve(k^2-1,n^2)}) minus {1}):
%p f(1):= 2:
%p map(f, [$1..100]); # _Robert Israel_, Jan 17 2019
%t With[{c=Range[2,10000]},Flatten[Table[Select[c,Divisible[#^2-1, n^2]&, 1],{n,60}]]] (* _Harvey P. Dale_, Oct 23 2011 *)
%o (PARI) { A100836(n)=local(f,b,t,m); if(n==1,return(1)); if(n==2,return(3));t=valuation(n,2); if(n==2^t, return(2^(2*t-1)-1)); f=factorint(n/2^t);f=vector(matsize(f)[1],j,f[j,1]^(2*f[j,2])); if(t>0, f=concat(f,[2^(2*t-1)])); b=n^2+1; forvec(v=vector(#f,i,[0,1]), m=lift(chinese(vector(#f,j,Mod((-1)^v[j],f[j])))); if(m>1, b=min(b,m)); ); b } /* _Max Alekseyev_, Nov 21 2008 */
%Y Cf. A235868.
%K nonn,look
%O 1,1
%A Thomas Kerscher (Thomas.Kerscher(AT)web.de), Jan 19 2005
%E Entries confirmed by _Ray Chandler_, _R. J. Mathar_, and _Max Alekseyev_, Nov 21 2008