Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Sep 08 2022 08:45:15
%S 3,9,5,9,9,9,9,9,9,5,8,1,3,1,4,6,2,4,3,1,8,1,0,8,7,8,1,3,1,5,7,5,8,4,
%T 8,6,6,3,8,8,1,3,8,2,4,4,7,6,4,7,7,8,4,7,5,2,8,1,7,5,0,4,4,2,6,8,8,8,
%U 7,9,2,9,5,8,6,1,3,4,8,6,5,4,6,2,5,5,4,4,6,3,2,2,1,9,7,9,3,7,7,8,9,0,9,7,1
%N Decimal expansion of exp(Pi*sqrt(29/8)).
%C Let q = this constant, then q = 396 - Sum_{k>=1} A052241(k)/q^(4k-1) where A052241 is the McKay-Thompson series of class 8C for Monster.
%H G. C. Greubel, <a href="/A100811/b100811.txt">Table of n, a(n) for n = 3..10000</a>
%H Titus Piezas III <a href="http://sites.google.com/site/tpiezas/ramanujan">The Ramanujan Pages</a>
%e 395.9999995813146243181087813157584866388138244764778475...
%t RealDigits[Exp[Pi Sqrt[29/8]],10,120][[1]] (* _Harvey P. Dale_, Feb 08 2015 *)
%o (PARI) exp(Pi*sqrt(29/8)) \\ _G. C. Greubel_, Feb 13 2018
%o (Magma) R:= RealField(); Exp(Pi(R)*Sqrt(29/8)); // _G. C. Greubel_, Feb 13 2018
%Y Cf. A052241, A060295.
%K cons,nonn
%O 3,1
%A _Gerald McGarvey_, Jan 05 2005