Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Mar 31 2014 19:08:40
%S 1,0,1,1,0,1,0,3,0,1,2,0,5,0,1,0,8,0,7,0,1,4,0,18,0,9,0,1,0,20,0,32,0,
%T 11,0,1,8,0,56,0,50,0,13,0,1,0,48,0,120,0,72,0,15,0,1,16,0,160,0,220,
%U 0,98,0,17,0,1,0,112,0,400,0,364,0,128,0,19,0,1,32,0,432,0,840,0,560,0,162,0,21,0,1
%N Triangle read by rows: T(n,k)=number of 231- and 312-avoiding permutations of [n] having k fixed points.
%C Also number of compositions of n having k odd parts. Example: T(3,1)=3 because we have 3=2+1=1+2.
%C Row n has n+1 terms.
%C Sum of row n is 2^(n-1) (A000079(n-1)) for n>0.
%H Alois P. Heinz, <a href="/A100749/b100749.txt">Rows n = 0..140, flattened</a>
%H T. Mansour and A. Robertson, <a href="http://dx.doi.org/10.1007/s000260200013">Refined restricted permutations avoiding subsets of patterns of length three</a>, Annals of Combinatorics, 6, 2002, 407-418 (Theorem 2.8).
%F T(n, k)=2^[(n-k-2)/2]*[(n+3k)/(n-k)]*binomial((n+k-2)/2, k) if k<n and n-k=0 (mod 2); T(n, n)=1.
%F G.f.: (1-z^2)/(1-t*z-2*z^2).
%F G.f. for column k: x^k*(1-x^2)/(1 - 2*x^2)^(k+1). - _Geoffrey Critzer_, Mar 31 2014
%e T(4,2) = 5 because we have 1432, 1243, 1324, 2134 and 3214.
%e Triangle begins:
%e 00: 1,
%e 01: 0, 1,
%e 02: 1, 0, 1,
%e 03: 0, 3, 0, 1,
%e 04: 2, 0, 5, 0, 1,
%e 05: 0, 8, 0, 7, 0, 1,
%e 06: 4, 0, 18, 0, 9, 0, 1,
%e 07: 0, 20, 0, 32, 0, 11, 0, 1,
%e 08: 8, 0, 56, 0, 50, 0, 13, 0, 1,
%e 09: 0, 48, 0, 120, 0, 72, 0, 15, 0, 1,
%e 10: 16, 0, 160, 0, 220, 0, 98, 0, 17, 0, 1,
%e 11: 0, 112, 0, 400, 0, 364, 0, 128, 0, 19, 0, 1,
%e 12: 32, 0, 432, 0, 840, 0, 560, 0, 162, 0, 21, 0, 1,
%e 13: 0, 256, 0, 1232, 0, 1568, 0, 816, 0, 200, 0, 23, 0, 1,
%e 14: 64, 0, 1120, 0, 2912, 0, 2688, 0, 1140, 0, 242, 0, 25, 0, 1,
%e 15: 0, 576, 0, 3584, 0, 6048, 0, 4320, 0, 1540, 0, 288, 0, 27, 0, 1,
%e ...
%p T:=proc(n,k) if k=n then 1 elif k<n and n-k mod 2 =0 then 2^((n-k-2)/2)*(n+3*k)*binomial((n+k-2)/2,k)/(n-k) else 0 fi end: for n from 0 to 13 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
%p # second Maple program
%p T:= proc(n) option remember; local j; if n=0 then 1
%p else []; for j to n do zip((x, y)-> x+y, %,
%p [`if`(irem(j,2)=1, 0, [][]), T(n-j)], 0) od; %[] fi
%p end:
%p seq (T(n), n=0..20); # _Alois P. Heinz_, Nov 06 2012
%t t[n_, k_] := Which[k == n, 1, k<n && Mod[n-k, 2] == 0, 2^((n-k-2)/2)*(n+3*k)*Binomial[(n+k-2)/2, k]/(n-k), True, 0]; Table[t[n, k], {n, 0, 20}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Jan 17 2014 *)
%Y Cf. A000079.
%K nonn,tabl
%O 0,8
%A _Emeric Deutsch_, Jan 14 2005