login
Inverse modulo 2 binomial transform of 8^n.
0

%I #5 Dec 20 2019 17:29:20

%S 1,7,63,441,4095,28665,257985,1805895,16777215,117440505,1056964545,

%T 7398751815,68702695425,480918867975,4328269811775,30297888682425,

%U 281474976710655,1970324836974585,17732923532771265,124130464729398855

%N Inverse modulo 2 binomial transform of 8^n.

%C 8^n may be retrieved as sum{k=0..n, mod(binomial(n,k),2)*a(k)}.

%F a(n)=sum{k=0..n, (-1)^A010060(n-k)*mod(binomial(n, k), 2)8^k}.

%K easy,nonn

%O 0,2

%A _Paul Barry_, Dec 06 2004

%E Name corrected by _N. J. A. Sloane_, Dec 20 2019