The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A100684 Number of partitions of 2n free of multiples of 8 such that 4 occurs at most once. All odd parts occur with even multiplicities. There is no restriction on the other even parts. 1
 1, 2, 4, 8, 12, 20, 32, 48, 72, 106, 152, 216, 305, 422, 580, 792, 1068, 1432, 1908, 2520, 3313, 4332, 5628, 7280, 9373, 12008, 15324, 19480, 24661, 31112, 39120, 49016, 61229, 76260, 94692, 117264, 144834, 178412, 219244, 268784, 328746 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 Noureddine Chair, Partition Identities From Partial Supersymmetry, arXiv:hep-th/0409011v1, 2004. FORMULA G.f.: (1-x^4)*Product((1+x^(2*i))/(1-x^(2*i-1))^2, i=1..infinity). [Vladeta Jovovic] Expansion of (1 - q^4) * q^(-1/6) * eta(q^4) * eta(q^2) / eta(q)^2 in powers of q. G.f.: (1-x^4) * Prod_{k>0} (1 + x^(2*k)) * (1 + x^k)^2. - Michael Somos, Feb 10 2005 a(n) ~ 5^(3/4) * Pi * exp(Pi*sqrt(5*n/6)) / (2^(11/4) * 3^(3/4) * n^(5/4)). - Vaclav Kotesovec, Sep 06 2015 EXAMPLE G.f. = 1 + 2*x + 4*x^2 + 8*x^3 + 12*x^4 + 20*x^5 + 32*x^6 + 48*x^7 + 72*x^8 + ... MATHEMATICA nmax = 40; CoefficientList[Series[(1-x^4)*Product[(1+x^(2*k))/(1-x^(2*k-1))^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 06 2015 *) PROG (PARI) {a(n) = my(A); if( n<0, 0, A = x*O(x^n); polcoeff( (1 - x^4) * eta(x^4 + A) * eta(x^2 + A) / eta(x + A)^2, n))}; /* Michael Somos, Feb 10 2005 */ CROSSREFS Cf. A080054. Sequence in context: A300414 A307732 A103258 * A131770 A322419 A246850 Adjacent sequences:  A100681 A100682 A100683 * A100685 A100686 A100687 KEYWORD nonn AUTHOR Noureddine Chair, Jan 27 2005 EXTENSIONS Corrected by Vladeta Jovovic, Feb 01 2005 Typo in PARI program fixed by Vaclav Kotesovec, Sep 06 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 24 18:46 EDT 2021. Contains 345419 sequences. (Running on oeis4.)