Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Jan 31 2013 12:03:12
%S 3,3,7,21,79,357,1879,11277,75967,567381,4652071,41534493,401057935,
%T 4164175845,46260731384,547489559470,6876483788377,91352567576937,
%U 1279774932585453,18855298837939164,291449116254193528
%N Sum_{k>=1} k^n/Catalan(k) rounded to nearest integer.
%C The exact values are conjectured to be close to integers, but there is no sound basis for it as yet. The coincidence for the first 10 instances is however intriguing.
%F Sum[k^n/((2k)!/k!/(k+1)!), {k, \[Infinity]}]==Sum[Hypergeometric2F1[m+1, m+2, m+1/2, 1/4]StirlingS2[n, m]/(2m-1)!!/2^m(m+1)!m!, {m, 1, n}]; see Formula. Hypergeometric2F1[m, m+1, m-1/2, 1/4] equal to h[a_]:=h[a]=Apart[(4*(-3+2*a)*((-5+2*a)*h[ -2+a]-(-4+a)*h[ -1+a]))/(3*(-1+a)*a)]; h[1]:=2+(4*Pi)/(9*Sqrt[3]); h[0]:=1;
%e n float(n) Exact(n)
%e 0 2.806133 2 + (4*Pi)/(9*Sqrt[3])
%e 1 3.074844 2 + (16*Pi)/(27*Sqrt[3])
%e 2 6.995495 (2*(567 + 52*Sqrt[3]*Pi))/243
%e 3 20.986486 14 + (104*Pi)/(27*Sqrt[3])
%e 4 79.000346 158/3 + (392*Pi)/(27*Sqrt[3])
%t Hypergeometric2F1[a, a+1, a-1/2, 1/4] equals h[a_]:=h[a]=Apart[(4*(-3+2*a)*((-5+2*a)*h[ -2+a]-(-4+a)*h[ -1+a]))/(3*(-1+a)*a)]; h[1]:=2+(4*Pi)/(9*Sqrt[3]); h[0]:=1; Table[Round[Sum[h[m+1] StirlingS2[n, m]/(2m-1)!!/2^m (m+1)!m!, {m, 0, n}]], {n, 14}]
%K easy,nonn
%O 0,1
%A _Wouter Meeussen_, Dec 05 2004