Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #26 Nov 12 2018 07:17:32
%S 0,1,1,1,4,1,1,3,3,1,7,32,12,32,7,19,75,50,50,75,19,41,216,27,272,27,
%T 216,41,751,3577,1323,2989,2989,1323,3577,751,989,5888,-928,10496,
%U -4540,10496,-928,5888,989,2857,15741,1080,19344,5778,5778,19344,1080,15741,2857,16067
%N Triangle read by rows: numerators of Cotesian numbers C(n,k) (0 <= k <= n) if the denominators are set to the lcm's of the rows (A002176).
%D Carl Erik Froeberg, Numerical Mathematics, Benjamin/Cummings Pu.Co. 1985, ISBN 0-8053-2530-1, Chapter 17.2.
%D Charles Jordan, Calculus of Finite Differences, Chelsea 1965, p. 513.
%H Alois P. Heinz, <a href="/A100642/b100642.txt">Rows n = 0..100, flattened</a>
%H W. M. Johnson, <a href="/A002176/a002176.pdf">On Cotesian numbers: their history, computation and values to n=20</a>, Quart. J. Pure Appl. Math., 46 (1914), 52-65. [Annotated scanned copy]
%e 0, 1/2, 1/2, 1/6, 2/3, 1/6, 1/8, 3/8, 3/8, 1/8, 7/90, 16/45, 2/15, 16/45, 7/90, 19/288, 25/96, 25/144, 25/144, 25/96, 19/288, 41/840, 9/35, 9/280, 34/105, 9/280, 9/35, 41/840, ... = A100640/A100641 = A100642/A002176 (the latter is not in lowest terms)
%e Triangle begins
%e 0;
%e 1, 1;
%e 1, 4, 1;
%e 1, 3, 3, 1;
%e 7, 32, 12, 32, 7;
%p # (This defines the Cotesian numbers C(n,i))
%p with(combinat); C:=proc(n,i) if i=0 or i=n then RETURN( (1/n!)*add(n^a*stirling1(n,a)/(a+1),a=1..n+1) ); fi; (1/n!)*binomial(n,i)* add( add( n^(a+b)*stirling1(i,a)*stirling1(n-i,b)/((b+1)*binomial(a+b+1,b+1)), b=1..n-i+1), a=1..i+1); end;
%p den:=proc(n) local t1,i; t1:=1; for i from 0 to n do t1:=ilcm(t1,denom(C(n,i))); od: t1; end;
%p # Then den(n)*C(n,k) gives the current sequence
%p seq(seq(den(n,k)*C(n,k), k=0..n), n=0..10);
%t c[n_, i_] /; i == 0 || i == n = (1/n!)*Sum[n^a*StirlingS1[n, a]/(a+1), {a, 1, n+1}]; c[n_, i_] = (1/n!)*Binomial[n, i]*Sum[n^(a + b)*StirlingS1[i, a]*StirlingS1[n-i, b]/((b+1)*Binomial[a+b+1, b+1]), {b, 1, n}, {a, 1, i+1}]; den[n_] := (For[t1 = 1; i = 0, i <= n, i++, t1 = LCM[t1, c[n, i] // Denominator]]; t1); Table[den[n]*c[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Apr 11 2013, after Maple *)
%Y Cf. A100641, A100620, A100621, A002177, A002176 (row sums), A100640.
%K sign,frac,tabl
%O 0,5
%A _N. J. A. Sloane_, Dec 04 2004