Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 May 02 2021 20:20:49
%S 1,2,2,3,2,5,2,4,3,5,2,8,2,5,5,5,2,8,2,8,5,5,2,11,3,5,4,8,2,15,2,6,5,
%T 5,5,13,2,5,5,11,2,15,2,8,8,5,2,14,3,8,5,8,2,11,5,11,5,5,2,25,2,5,8,7,
%U 5,15,2,8,5,15,2,18,2,5,8,8,5,15,2,14,5,5,2,25,5,5,5,11,2,25,5,8,5,5,5,17
%N a(n) = Card{(x,y,z) : x <= y <= z, x|n, y|n, z|n, gcd(x,y)=1, gcd(x,z)=1, gcd(y,z)=1}.
%C First differs from A018892 at a(30) = 15, A018892(30) = 14.
%C First differs from A343654 at a(210) = 51, A343654(210) = 52.
%C Also a(n) = Card{(x,y,z) : x <= y <= z and lcm(x,y)=n, lcm(x,z)=n, lcm(y,z)=n}.
%C In words, a(n) is the number of pairwise coprime unordered triples of divisors of n. - _Gus Wiseman_, May 01 2021
%H Antti Karttunen, <a href="/A100565/b100565.txt">Table of n, a(n) for n = 1..10000</a>
%F a(n) = (tau(n^3) + 3*tau(n) + 2)/6.
%e From _Gus Wiseman_, May 01 2021: (Start)
%e The a(n) triples for n = 1, 2, 4, 6, 8, 12, 24:
%e (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1)
%e (1,1,2) (1,1,2) (1,1,2) (1,1,2) (1,1,2) (1,1,2)
%e (1,1,4) (1,1,3) (1,1,4) (1,1,3) (1,1,3)
%e (1,1,6) (1,1,8) (1,1,4) (1,1,4)
%e (1,2,3) (1,1,6) (1,1,6)
%e (1,2,3) (1,1,8)
%e (1,3,4) (1,2,3)
%e (1,1,12) (1,3,4)
%e (1,3,8)
%e (1,1,12)
%e (1,1,24)
%e (End)
%t pwcop[y_]:=And@@(GCD@@#==1&/@Subsets[y,{2}]);
%t Table[Length[Select[Tuples[Divisors[n],3],LessEqual@@#&&pwcop[#]&]],{n,30}] (* _Gus Wiseman_, May 01 2021 *)
%o (PARI) A100565(n) = (numdiv(n^3)+3*numdiv(n)+2)/6; \\ _Antti Karttunen_, May 19 2017
%Y Cf. A000005, A070919, A086222, A086165, A048691, A063647.
%Y Positions of 2's through 5's are A000040, A001248, A030078, A068993.
%Y The version for subsets of {1..n} instead of divisors is A015617.
%Y The version for pairs of divisors is A018892.
%Y The ordered version is A048785.
%Y The strict case is A066620.
%Y The version for strict partitions is A220377.
%Y A version for sets of divisors of any size is A225520.
%Y The version for partitions is A307719 (no 1's: A337563).
%Y The case of distinct parts coprime is A337600 (ordered: A337602).
%Y A001399(n-3) = A069905(n) = A211540(n+2) counts 3-part partitions.
%Y A007304 ranks 3-part strict partitions.
%Y A014311 ranks 3-part compositions.
%Y A014612 ranks 3-part partitions.
%Y A051026 counts pairwise indivisible subsets of {1..n}.
%Y A302696 lists Heinz numbers of pairwise coprime partitions.
%Y A337461 counts 3-part pairwise coprime compositions.
%Y Cf. A000961, A000977, A007360, A023022, A087087, A276187, A282935, A337601, A337603, A338331, A343652, A343654.
%K easy,nonn
%O 1,2
%A _Vladeta Jovovic_, Nov 28 2004