login
A100542
Two-color Rado numbers R(0,n).
1
5, 1, 9, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, 190, 210, 231, 253, 276, 300, 325, 351, 378, 406, 435, 465, 496, 528, 561, 595, 630, 666, 703, 741, 780, 820, 861, 903, 946, 990, 1035, 1081, 1128, 1176, 1225, 1275, 1326, 1378, 1431, 1485, 1540, 1596
OFFSET
1,1
REFERENCES
S. Burr, S. Loo and D. Schaal, On Rado numbers, I, preprint.
LINKS
S. Jones and D. Schaal, Two-color Rado numbers for x + y + z = kz, Discr. Math., 289 (2004), 63-69.
FORMULA
After the third term these are simply triangular numbers.
From _Colin Barker_, Jul 30 2013: (Start)
a(n) = n*(n+1)/2 for n > 3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 6.
G.f.: x*(5-14*x+21*x^2-19*x^3+11*x^4-3*x^5)/(1-x)^3. (End)
E.g.f.: (1/2)*x*(8 - 2*x + x^2 + (2+x)*exp(x) ). - _G. C. Greubel_, Mar 27 2023
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {5, 1, 9, 10, 15, 21}, 70] (* _Harvey P. Dale_, Sep 12 2017 *)
Join[{5, 1, 9}, Binomial[Range[5, 70], 2]] (* _G. C. Greubel_, Mar 27 2023 *)
PROG
(Magma) [5, 1, 9] cat [Binomial(n+1, 2): n in [4..70]]; // _G. C. Greubel_, Mar 27 2023
(SageMath) [5, 1, 9]+[binomial(n+1, 2) for n in range(4, 71)] # _G. C. Greubel_, Mar 27 2023
CROSSREFS
Cf. A000217.
Sequence in context: A147406 A147354 A134233 * A324378 A147404 A254068
KEYWORD
nonn,easy
AUTHOR
_N. J. A. Sloane_, Dec 31 2004
STATUS
approved