login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A100538
Volume of the 3-dimensional box of sides of length equal to consecutive Padovan numbers (A000931). These boxes form a spiral in three dimensions similar to the spiral of Fibonacci boxes in two dimensions.
3
1, 2, 4, 12, 24, 60, 140, 315, 756, 1728, 4032, 9408, 21756, 50764, 117845, 273910, 637260, 1480404, 3442800, 8003000, 18603000, 43251975, 100540440, 233735040, 543371136, 1263161472, 2936540824, 6826574552, 15869878969, 36893076570
OFFSET
1,2
COMMENTS
a(n)^(1/3) rounded to the nearest integer equals A000931(n+5). - Peter M. Chema, Apr 24 2017
LINKS
Ian Stewart, Tales of a Neglected Number, Mathematical Recreations, Scientific American, Vol. 274, No. 6 (1996), pp. 102-103.
FORMULA
For large n a(n+1) -> a(n) * p^3 where p is the plastic number = 1.324718... a(n+1) = a(n)+ (a(n)/P(n))*P(n+1 ) where P are the Padovan numbers (A000931) starting 1, 1, 1, 2, 2, 3, 4, 5, 7, etc.
a(n) = +a(n-1) +2*a(n-2) +3*a(n-3) -2*a(n-4) +4*a(n-5) -4*a(n-6) -a(n-7) -a(n-8) -a(n-10) = A000931(n+4)*A000931(n+5)*A000931(n+6). G.f.: x*(1+x+x^3) / ( (x-1)*(x^3-2*x^2+3*x-1)*(x^6+3*x^5+5*x^4+5*x^3+5*x^2+3*x+1) ). - R. J. Mathar, Sep 14 2010
MATHEMATICA
LinearRecurrence[{1, 2, 3, -2, 4, -4, -1, -1, 0, -1}, {1, 2, 4, 12, 24, 60, 140, 315, 756, 1728}, 50] (* Vincenzo Librandi, Apr 24 2017 *)
CROSSREFS
Cf. A000931.
Sequence in context: A057422 A036045 A331392 * A303794 A135139 A161894
KEYWORD
nonn
AUTHOR
John Lien, Nov 27 2004
EXTENSIONS
More terms from R. J. Mathar, Sep 14 2010
STATUS
approved