Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Apr 03 2023 10:36:10
%S 1,2,3,5,11,13,14,34,931,7037,95017,3549221,75296795,3518502151,
%T 34778126848,747746329129,13428156340222,728260738568834,
%U 17205012007789762
%N Prime-th recurrence with reversal at each step.
%C Starting at other than a(n) = 1, does this sequence ever go into a loop?
%D Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recreations and Essays, 13th ed. New York: Dover, pp. 14-15, 1987.
%H Andrew Booker, <a href="https://t5k.org/nthprime/index.php#n-th">The Nth Prime Page</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Reversal.html">Reversal</a>.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RossersTheorem.html">Rosser's Theorem</a>.
%F a(n) = reversal(a(n-1)th prime).
%e a(7) = 14 because a(6) = 13, the 13th prime is 41 and reversal(41) = 14.
%t f[n_] := FromDigits[ Reverse[ IntegerDigits[ Prime[n]]]]; NestList[f, 1, 16] (* _Robert G. Wilson v_, Dec 02 2004 *)
%t NestList[IntegerReverse[Prime[#]]&,1,19] (* _Harvey P. Dale_, May 02 2022 *)
%Y Cf. A007097, A031877.
%K nonn,base,more
%O 0,2
%A _Jonathan Vos Post_, Nov 22 2004
%E a(15)-a(16) from _Robert G. Wilson v_, Dec 02 2004
%E a(17)-a(18) from _Paul Zimmermann_, Dec 04 2004, computed thanks to Deléglise-Rivat's program; confirmed by Marc Deléglise, Dec 09 2004