Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #50 Aug 09 2024 10:32:32
%S 1,6,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,
%T 9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,
%U 9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9
%N Digital root of 6^n.
%C Also the digital root of k^n for any k == 6 (mod 9). - _Timothy L. Tiffin_, Dec 02 2023
%H <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (1).
%F From _Timothy L. Tiffin_, Dec 01 2023: (Start)
%F a(n) = 9 for n >= 2.
%F G.f.: (1+5x+3x^2)/(1-x).
%F a(n) = A100401(n) for n <> 1.
%F a(n) = A010888(A000400(n)) = A010888(A001024(n)) = A010888(A009968(n)) = A010888(A009977(n)) = A010888(A009986(n)) = A010888(A159991(n)). (End)
%F E.g.f.: 9*exp(x) - 3*x - 8. - _Elmo R. Oliveira_, Aug 09 2024
%e For n=8, the digits of 6^8 = 1679616 sum to 36, whose digits sum to 9. So, a(8) = 9. - _Timothy L. Tiffin_, Dec 01 2023
%t PadRight[{1, 6}, 100, 9] (* _Timothy L. Tiffin_, Dec 03 2023 *)
%o (PARI) a(n) = if( n<2, [1,6][n+1], 9); \\ _Joerg Arndt_, Dec 03 2023
%Y Cf. A000400, A001024, A009968, A009977, A009986, A010888, A100401, A159991.
%K easy,nonn,base
%O 0,2
%A _Cino Hilliard_, Dec 31 2004