login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A100269
Primes of the form x^8 + y^8 with x^4 + y^4, x^2 + y^2 and x+y also prime.
3
2, 257, 65537, 2724909545357921, 3282116715437377, 40213879071634241, 147578912575757441, 303879829574456257, 697576026529536481, 1316565220482548321, 2860283484326400961, 4080251077774711937
OFFSET
1,1
COMMENTS
The Mathematica program generates numbers of the form x^8 + y^8 in order of increasing magnitude; it accepts a number when all the x^2^k + y^2^k are prime for k=0,1,2,3.
LINKS
Eric Weisstein's World of Mathematics, Generalized Fermat Number.
MATHEMATICA
n=3; pwr=2^n; xmax=2; r=Range[xmax]; num=r^pwr+r^pwr; Table[While[p=Min[num]; x=Position[num, p][[1, 1]]; y=r[[x]]; r[[x]]++; num[[x]]=x^pwr+r[[x]]^pwr; If[x==xmax, xmax++; AppendTo[r, xmax+1]; AppendTo[num, xmax^pwr+(xmax+1)^pwr]]; allPrime=True; k=0; While[k<=n&&allPrime, allPrime=PrimeQ[x^2^k+y^2^k]; k++ ]; !allPrime]; p, {20}]
CROSSREFS
KEYWORD
nonn
AUTHOR
T. D. Noe, Nov 11 2004
STATUS
approved