Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Feb 21 2023 06:18:22
%S 2,65537,4338014017,2973697798081,36054040477057,314707907280257,
%T 184884411482927041,665698084159890497,675416609183179841,
%U 2177953490397261761,8746361693522261761,18492693803573123777
%N Primes of the form x^16 + y^16.
%C The Mathematica program generates numbers of the form x^16 + y^16 in order of increasing magnitude; it accepts a number when it is prime.
%H T. D. Noe, <a href="/A100266/b100266.txt">Table of n, a(n) for n = 1..1000</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/GeneralizedFermatNumber.html">Generalized Fermat Number</a>.
%t n=4; pwr=2^n; xmax=2; r=Range[xmax]; num=r^pwr+r^pwr; Table[While[p=Min[num]; x=Position[num, p][[1, 1]]; y=r[[x]]; r[[x]]++; num[[x]]=x^pwr+r[[x]]^pwr; If[x==xmax, xmax++; AppendTo[r, xmax+1]; AppendTo[num, xmax^pwr+(xmax+1)^pwr]]; !PrimeQ[p]]; p, {15}]
%t q=16;lst={};Do[Do[p=n^q+m^q;If[PrimeQ[p],AppendTo[lst,p]],{n,0,5!}],{m,0,5!}];lst;Length[lst];Take[Union[lst],55] (* _Vladimir Joseph Stephan Orlovsky_, Feb 21 2009 *)
%t Union[Select[Total[#^16]&/@Tuples[Range[20],2],PrimeQ]] (* _Harvey P. Dale_, Nov 03 2013 *)
%Y Cf. A100267 (primes of the form x^32 + y^32), A006686 (primes of the form x^8 + y^8), A002645 (primes of the form x^4 + y^4), A002313 (primes of the form x^2 + y^2).
%K nonn
%O 1,1
%A _T. D. Noe_, Nov 11 2004