Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Sep 08 2022 08:45:15
%S 1,12,44,108,215,376,602,904,1293,1780,2376,3092,3939,4928,6070,7376,
%T 8857,10524,12388,14460,16751,19272,22034,25048,28325,31876,35712,
%U 39844,44283,49040,54126,59552
%N Structured truncated tetrahedral numbers.
%H Vincenzo Librandi, <a href="/A100156/b100156.txt">Table of n, a(n) for n = 1..5000</a>
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4, -6, 4, -1).
%F a(n) = (1/6)*(11*n^3 - 3*n^2 - 2*n).
%F From _Harvey P. Dale_, Sep 28 2011: (Start)
%F a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(0)=1, a(1)=12, a(2)=44, a(3)=108.
%F G.f.: x*(2*x*(x+4)+1)/(x-1)^4. (End)
%F E.g.f.: x*(6 + 30*x + 11*x^2)*exp(x)/6. - _G. C. Greubel_, Oct 18 2018
%t Table[(11n^3-3n^2-2n)/6,{n,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{1,12,44,108},40] (* _Harvey P. Dale_, Sep 28 2011 *)
%o (Magma) [(1/6)*(11*n^3-3*n^2-2*n): n in [1..40]]; // _Vincenzo Librandi_, Jul 19 2011
%o (PARI) vector(50, n, (11*n^3 - 3*n^2 - 2*n)/6) \\ _G. C. Greubel_, Oct 18 2018
%Y Cf. A100155, A100157 for adjacent structured Archimedean solids; A100145 for more on structured polyhedral numbers. Similar to truncated tetrahedral numbers A005906.
%K easy,nonn
%O 1,2
%A James A. Record (james.record(AT)gmail.com), Nov 07 2004