login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

If n is the k-th squarefree number then a(n) = k, otherwise a(n) = 0.
12

%I #26 May 11 2024 02:24:55

%S 1,2,3,0,4,5,6,0,0,7,8,0,9,10,11,0,12,0,13,0,14,15,16,0,0,17,0,0,18,

%T 19,20,0,21,22,23,0,24,25,26,0,27,28,29,0,0,30,31,0,0,0,32,0,33,0,34,

%U 0,35,36,37,0,38,39,0,0,40,41,42,0,43,44,45,0,46,47,0,0,48,49,50,0,0,51,52,0

%N If n is the k-th squarefree number then a(n) = k, otherwise a(n) = 0.

%H Charles R Greathouse IV, <a href="/A100112/b100112.txt">Table of n, a(n) for n = 1..10000</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Squarefree.html">Squarefree</a>

%F a(A005117(n)) = n;

%F a(n) = (A013928(n) + 1)*A008966(n).

%F a(n) = Sum_{k=1..n} mu(lcm(n,k))^2. - _Benoit Cloitre_, Jun 14 2007

%t a[n_] := Sum[MoebiusMu[LCM[n, k]]^2, {k, 1, n}];

%t Table[a[n], {n, 1, 100}] (* _Jean-François Alcover_, Nov 18 2021, after _Benoit Cloitre_ *)

%o (PARI) a(n)=sum(k=1,n,moebius(lcm(n,k))^2) \\ _Benoit Cloitre_, Jun 14 2007

%o (PARI) first(n)=my(v=vector(n),k); forsquarefree(m=1,n, v[m[1]]=k++); v \\ _Charles R Greathouse IV_, Jan 08 2018

%o (Python)

%o from sympy import integer_nthroot, mobius

%o def A100112(n):

%o b = 0

%o k, r = integer_nthroot(n,2)

%o a, c = (mobius(k),k-1) if r else (0,k)

%o for i in range(1,c+1):

%o m, j = mobius(i), i**2

%o a += m*(n//j)

%o b += m*((n-1)//j)

%o return a if a>b else 0 # _Chai Wah Wu_, May 11 2024

%Y Cf. A005117, A008966, A013928.

%K nonn,easy

%O 1,2

%A _Reinhard Zumkeller_, Nov 07 2004