login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A100095
An inverse Chebyshev transform of the Fibonacci numbers.
7
0, 1, 1, 5, 7, 25, 41, 125, 225, 625, 1195, 3125, 6227, 15625, 32059, 78125, 163727, 390625, 831505, 1953125, 4206145, 9765625, 21215481, 48828125, 106782837, 244140625, 536618341, 1220703125, 2693492305, 6103515625, 13507578125
OFFSET
0,4
COMMENTS
Image of x/(1-x-x^2) under the transform g(x)->(1/sqrt(1-4xx^2)g(xc(x^2)), where c(x) is the g.f. of the Catalan numbers A000108. This is the inverse of the Chebyshev transform which takes A(x) to ((1-x^2)/(1+x^2))A(x/(1+x^2)).
Hankel transform is (-1)^n*(2^n-0^n)/2. Hankel transform of a(n+1) is A141125. - Paul Barry, Jun 05 2008
Basically A000351 interleaved with A144635. - Peter Luschny, May 31 2014
LINKS
FORMULA
G.f.: (x^2*sqrt(1-4*x^2)+x*(1-4*x^2))/((1-4*x^2)*(1-5*x^2)).
a(n) = sum( k=0..floor(n/2), binomial(n, k)Fib(n-2k) ).
Conjecture: (-n+2)*a(n) +(-n+3)*a(n-1) +(9*n-22)*a(n-2) +(9*n-31)*a(n-3) +20*(-n+3)*a(n-4) +20*(-n+4)*a(n-5)=0. - R. J. Mathar, Nov 24 2012
Recurrence: (n-2)*a(n) = (9*n-22)*a(n-2) - 20*(n-3)*a(n-4). - Vaclav Kotesovec, Feb 12 2014
a(n) ~ 5^((n-1)/2). - Vaclav Kotesovec, Feb 12 2014
a(n) = sum(j=0..(n-1)/2, 4^(j)*binomial((n-1)/2,j)). - Vladimir Kruchinin, May 31 2014
a(2*n) = 5^n/sqrt(5) - 2^n * (2*n-1)!! * hypergeom([1, n+1/2], [n+1], 4/5)/(5*n!), a(2*n+1) = 5^n. - Vladimir Reshetnikov, Oct 13 2016
MATHEMATICA
CoefficientList[Series[(x^2*Sqrt[1-4*x^2]+x*(1-4*x^2))/((1-4*x^2)*(1-5*x^2)), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 12 2014 *)
PROG
(Maxima)
a(n):=sum(4^(j)*binomial((n-1)/2, j), j, 0, (n-1)/2); /* Vladimir Kruchinin, May 31 2014 */
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Barry, Nov 03 2004
STATUS
approved