Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #55 Feb 22 2024 09:04:54
%S 1,1,1,2,1,1,2,1,1,2,1,1,2,1,1,2,1,1,2,1,1,2,1,1,2,1,1,2,1,1,2,1,1,2,
%T 1,1,2,1,1,2,1,1,2,1,1,2,1,1,2,1,1,2,1,1,2,1,1,2,1,1,2,1,1,2,1,1,2,1,
%U 1,2,1,1,2,1,1,2,1,1,2,1,1,2,1,1,2,1,1,2,1,1
%N A Chebyshev transform of Jacobsthal numbers.
%C A Chebyshev transform of A001045(n+1): if A(x) is the g.f. of a sequence, map it to ((1-x^2)/(1+x^2))*A(x/(1+x^2)).
%C Also decimal expansion of 1111/9990. - _Elmo R. Oliveira_, Feb 18 2024
%H G. C. Greubel, <a href="/A100063/b100063.txt">Table of n, a(n) for n = 0..1000</a>
%H Andrei Asinowski, Cyril Banderier, and Valerie Roitner, <a href="https://lipn.univ-paris13.fr/~banderier/Papers/several_patterns.pdf">Generating functions for lattice paths with several forbidden patterns</a>, (2019).
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,1).
%F G.f.: (1+x)(1+x^2)/(1-x^3).
%F a(n) = n*Sum_{k=0..floor(n/2)} binomial(n-k, k)(-1)^k*A001045(n-2k+1)/(n-k).
%F Multiplicative with a(3^e) = 2, a(p^e) = 1 otherwise. - _David W. Wilson_, Jun 11 2005
%F Dirichlet g.f.: zeta(s)*(1+1/3^s). Dirichlet convolution of A154272 and A000012. - _R. J. Mathar_, Feb 07 2011
%F a(n) = 2 if n == 0 (mod 3) and n > 0, and a(n) = 1 otherwise. - _Amiram Eldar_, Nov 01 2022
%F a(n) = gcd(Fibonacci(n), Lucas(n)) = gcd(A000045(n), A000032(n)), for n >= 1. - _Amiram Eldar_, Jul 10 2023
%e G.f. = 1 + x + x^2 + 2*x^3 + x^4 + x^5 + 2*x^6 + x^7 + x^8 + 2*x^9 + ... - _Michael Somos_, Feb 20 2024
%t PadRight[{1},120,{2,1,1}] (* or *) LinearRecurrence[{0,0,1},{1,1,1,2},120] (* _Harvey P. Dale_, Jul 08 2015 *)
%t a[ n_] := If[n<1, Boole[n==0], {2, 1, 1}[[1+Mod[n, 3]]]]; (* _Michael Somos_, Feb 20 2024 *)
%o (PARI) my(x='x+O('x^50)); Vec((1+x)(1+x^2)/(1-x^3)) \\ _G. C. Greubel_, May 03 2017
%o (PARI) {a(n) = if(n<1, n==0, [2, 1, 1][n%3+1])}; /* _Michael Somos_, Feb 20 2024 */
%Y Cf. A000012, A001045, A100051, A061347, A057079, A154272.
%Y Cf. A000032, A000045.
%K easy,nonn,mult
%O 0,4
%A _Paul Barry_, Nov 02 2004