login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Bisection of A001597.
1

%I #12 Aug 14 2024 01:50:42

%S 1,8,16,27,36,64,100,125,144,196,225,256,324,361,441,512,576,676,784,

%T 900,1000,1089,1225,1331,1444,1600,1728,1849,2025,2116,2197,2304,2500,

%U 2704,2809,3025,3136,3364,3481,3721,3969,4225,4489,4761,4913,5184,5476

%N Bisection of A001597.

%t t = Union@ Flatten@ Join[{1}, Table[ n^i, {n, 2, Sqrt[5775]}, {i, 2, Log[n, 5775]}]]; t[[2# - 1]] & /@ Range@(Length@t/2) (* _Robert G. Wilson v_ *)

%o (Python)

%o from sympy import mobius, integer_nthroot

%o def A099997(n):

%o def f(x): return int((n<<1)-3+x+sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(2,x.bit_length())))

%o kmin, kmax = 1,2

%o while f(kmax) >= kmax:

%o kmax <<= 1

%o while True:

%o kmid = kmax+kmin>>1

%o if f(kmid) < kmid:

%o kmax = kmid

%o else:

%o kmin = kmid

%o if kmax-kmin <= 1:

%o break

%o return kmax # _Chai Wah Wu_, Aug 14 2024

%K nonn,easy

%O 1,2

%A _N. J. A. Sloane_, Nov 20 2004

%E More terms from _Robert G. Wilson v_, Dec 14 2005