login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes of the form (p*(q-1) + (p-1)*q)/2, where p and q are consecutive odd primes.
3

%I #14 Nov 28 2018 19:07:12

%S 11,29,131,641,1721,2441,3539,10301,22349,36671,70481,79241,170957,

%T 175979,186191,198461,212981,304127,313031,324329,434939,655289,

%U 777041,852827,1031231,1126781,1339781,1511669,1571237,1741079,1875521,2003591

%N Primes of the form (p*(q-1) + (p-1)*q)/2, where p and q are consecutive odd primes.

%C Or, primes of the form prime(n)*prime(n+1)- (prime(n)+prime(n+1))/2.

%C Subsequence of A099909.

%e p=A000040(5)=11, q=A000040(5+1)=13: (11*(13-1)+(11-1)*13)/2 = (132+130)/2 = 131 = A000040(32), therefore 131 is a term.

%t f[n_] := Block[{p = Prime[n], q = Prime[n + 1]}, r = (p*(q - 1) + (p - 1)*q)/2; If[ PrimeQ[r], r, 0]]; l = {}; Do[a = f[n]; If[a != 0, AppendTo[l, a]], {n, 300}]; l (* _Robert G. Wilson v_, Nov 02 2004 *)

%t Select[((#[[1]](#[[2]]-1))+((#[[1]]-1)#[[2]]))/2&/@Partition[ Prime[ Range[ 2,300]],2,1],PrimeQ] (* _Harvey P. Dale_, Nov 28 2018 *)

%Y Cf. A098142.

%K nonn

%O 1,1

%A _Reinhard Zumkeller_, Oct 29 2004

%E More terms from _Robert G. Wilson v_, Nov 02 2004

%E Edited by _N. J. A. Sloane_ at the suggestion of _Andrew S. Plewe_, May 21 2007