login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of distinct prime-factors of ((prime(n)*(prime(n+1)-1)+(prime(n)-1)*prime(n+1))/2).
2

%I #11 May 16 2017 04:30:26

%S 1,1,2,1,2,2,2,1,2,3,2,1,3,1,2,1,2,2,2,3,2,2,4,3,1,2,2,3,3,2,2,3,2,1,

%T 2,3,3,3,2,3,3,1,2,3,3,3,3,3,3,2,2,2,3,2,1,2,3,4,1,2,2,2,2,3,2,2,2,2,

%U 3,2,4,4,2,2,2,3,2,3,1,1,3,1,4,3,1,4,3,1,2,3,3,3,3,3,3,3,2,2,3,1,1,3,1,3,3

%N Number of distinct prime-factors of ((prime(n)*(prime(n+1)-1)+(prime(n)-1)*prime(n+1))/2).

%C a(n) = A001221(A099909(n)).

%H G. C. Greubel, <a href="/A099910/b099910.txt">Table of n, a(n) for n = 2..5000</a>

%t dpf[{a_,b_}]:=PrimeNu[((a(b-1))+(a-1)b)/2]; dpf/@Partition[Prime[ Range[ 2,110]],2,1] (* _Harvey P. Dale_, Nov 16 2011 *)

%o (PARI) a(n)=omega(((prime(n)*(prime(n+1)-1)+(prime(n)-1)*prime(n+1))/2)) \\ _Michel Marcus_, May 16 2017

%Y Cf. A099911, A098142 (a(n) is 1).

%K nonn

%O 2,3

%A _Reinhard Zumkeller_, Oct 29 2004