Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #104 Aug 04 2023 02:44:58
%S 2,129,24133,3682913,496165411,62260698721,7472966967499,
%T 870530414842019,99262851056183695,11138479445180240497,
%U 1234379338586942892505,135436174616790289414111,14738971133550183905879827,1593061976858155930556059673,171191473337951767580578821529
%N a(n) = Sum of the first 10^n primes.
%H David Baugh, <a href="/A099824/b099824.txt">Table of n, a(n) for n = 0..23</a> [terms a(0)-a(17) from Marc Deleglise; terms a(18)-a(21) from Kim Walisch]
%H Cino Hilliard, <a href="http://groups.google.com/group/sumprimes/web/sum-of-primes-formulas">SumPrimes</a>, June 2008. [broken link]
%F a(n) = Sum_{i=1..10^n} A000040(i). - _José de Jesús Camacho Medina_, Dec 27 2014 (corrected by _Joerg Arndt_, Jan 05 2015)
%e For n=1, the sum of the first 10^1 = 10 primes is 2 + 3 + 5 + 7 + 11 + 13 + 17 + 19 + 23 + 29 = 129, so a(1) = 129. - _Michael B. Porter_, Aug 08 2016
%t NextPrim[n_] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; k = p = 1; s = 0; Do[ While[p = NextPrim[p]; s = s + p; k < 10^n, k++ ]; k++; Print[s], {n, 0, 8}]
%t Table[Sum[Prime[i], {i, 10^n}], {n, 0, 5}] (* _José de Jesús Camacho Medina_, Dec 27 2014 *)
%o (PARI) vecA099824(n)={ my(s,c,k=1,L:list); L=List();
%o forprime(m=2,prime(10^n),s+=m;c++; if(c==k,listput(L,s);k*=10));
%o return(vector(#L,i,L[i]))} \\ _R. J. Cano_, Aug 12 2016
%Y Cf. A000040, A006988, A007504, A099825, A099826.
%K nonn
%O 0,1
%A _Robert G. Wilson v_, Oct 25 2004
%E a(9) from _Hans Havermann_, May 06 2005
%E a(10) from _Cino Hilliard_, Apr 28 2006
%E a(11) from _Cino Hilliard_, Oct 03 2006
%E a(12)-a(13) from _Hiroaki Yamanouchi_, Jul 06 2014
%E a(11) corrected by _Marc Deleglise_, Apr 03 2016
%E a(14)-a(17) from _Marc Deleglise_, Apr 03 2016
%E a(18)-a(20) from _Kim Walisch_, Jun 05 2016
%E a(21) from _Kim Walisch_, Jun 11 2016
%E a(22) from _David Baugh_ using Kim Walisch's primesum program, Jun 21 2016
%E a(23) from _David Baugh_ using Kim Walisch's primesum program, Sep 26 2016