login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A099810
a(n) = a(n-1) XOR (a(n-1) + a(n-2)), with a(1)=1, a(2)=3, where XOR is the binary exclusive OR operation.
1
1, 3, 7, 13, 25, 63, 103, 193, 489, 835, 1647, 4061, 6545, 12543, 31343, 53505, 105073, 258307, 424567, 790797, 2005641, 3420447, 6748855, 16634209, 26811769, 51377059, 128377535, 219165917, 430383937, 1058044767, 1739056639
OFFSET
1,2
EXAMPLE
a(3) = 7 since 3 XOR (3+1) = 3 XOR 4 = 7.
a(4) = 13 since 7 XOR (7+3) = 7 XOR 10 = 13.
a(5) = 25 since 13 XOR (13+7) = 13 XOR 20 = 25.
The binary expansions of a(n) form a triangle (listed with ones place in leftmost column):
1,
1,1,
1,1,1,
1,0,1,1,
1,0,0,1,1,
1,1,1,1,1,1,
1,1,1,0,0,1,1,
1,0,0,0,0,0,1,1,
1,0,0,1,0,1,1,1,1,
1,1,0,0,0,0,1,0,1,1,
1,1,1,1,0,1,1,0,0,1,1,
1,0,1,1,1,0,1,1,1,1,1,1,...
PROG
(PARI) a(n)=if(n==1, 1, if(n==2, 3, bitxor(a(n-1), a(n-1)+a(n-2))))
CROSSREFS
Cf. A099811.
Sequence in context: A363143 A282913 A284026 * A283177 A284297 A205521
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 26 2004
STATUS
approved