login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Product_{i=1..2n} prime(i).
5

%I #27 Sep 08 2022 08:45:15

%S 1,6,210,30030,9699690,6469693230,7420738134810,13082761331670030,

%T 32589158477190044730,117288381359406970983270,

%U 557940830126698960967415390,3217644767340672907899084554130,23768741896345550770650537601358310,232862364358497360900063316880507363070

%N a(n) = Product_{i=1..2n} prime(i).

%H Vincenzo Librandi, <a href="/A099788/b099788.txt">Table of n, a(n) for n = 0..100</a>

%p a:=n-> mul(ithprime(j),j=1..2*n): seq(a(n),n=0..13); # _Emeric Deutsch_

%t Table[Product[Prime[i], {i, 2n}], {n, 0, 20}] (* _Wesley Ivan Hurt_, Mar 13 2014 *)

%o (PARI) a(n) = prod(i=1, 2*n, prime(i)); \\ _Michel Marcus_, Mar 15 2014

%o (Magma) [1] cat [&*[NthPrime(j): j in [1..2*n]]: n in [1..20]]; // _G. C. Greubel_, Sep 04 2019

%o (Sage) [1]+[product(nth_prime(j) for j in (1..2*n)) for n in (1..20)] # _G. C. Greubel_, Sep 04 2019

%Y Cf. A000040, A099800.

%Y Bisection of A002110.

%Y Subset of A030229.

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_, Nov 19 2004

%E More terms from _Emeric Deutsch_, Feb 23 2005

%E Name revised by _Wesley Ivan Hurt_, Mar 13 2014