login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{k=0..floor(n/4)} C(n-k,3*k)*3^(n-4*k).
6

%I #18 Sep 08 2022 08:45:15

%S 1,3,9,27,82,255,819,2727,9397,33312,120537,441855,1631017,6036879,

%T 22345074,82589247,304612975,1120960983,4116353265,15088372416,

%U 55224373105,201895801851,737506551321,2692518758163,9826402960882

%N a(n) = Sum_{k=0..floor(n/4)} C(n-k,3*k)*3^(n-4*k).

%C In general a(n) = Sum_{k=0..floor(n/4)} C(n-k,3*k) * u^k * v^(n-4*k) has g.f. (1-v*x)^2/((1-v*x)^3 - u*x^4) and satisfies the recurrence a(n) = 3*v*a(n-1) - 3*v^2*a(n-2) + v^3*a(n-3) + u*a(n-4).

%H G. C. Greubel, <a href="/A099786/b099786.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (9,-27,27,1).

%F G.f.: (1-3*x)^2/((1-3*x)^3 - x^4).

%F a(n) = 9*a(n-1) - 27*a(n-2) + 27*a(n-3) + a(n-4).

%p seq(coeff(series((1-3*x)^2/((1-3*x)^3 - x^4), x, n+1), x, n), n = 0..30); # _G. C. Greubel_, Sep 04 2019

%t LinearRecurrence[{9,-27,27,1},{1,3,9,27},40] (* or *) CoefficientList[ Series[-((1-3 x)^2/(x (x (x (x+27)-27)+9)-1)),{x,0,40}],x] (* _Harvey P. Dale_, Jun 06 2011 *)

%o (PARI) my(x='x+O('x^30)); Vec((1-3*x)^2/((1-3*x)^3 - x^4)) \\ _G. C. Greubel_, Sep 04 2019

%o (Magma) I:=[1,3,9,27]; [n le 4 select I[n] else 9*Self(n-1) - 27*Self(n-2) + 27*Self(n-3) +Self(n-4): n in [1..30]]; // _G. C. Greubel_, Sep 04 2019

%o (Sage)

%o def A099786_list(prec):

%o P.<x> = PowerSeriesRing(ZZ, prec)

%o return P((1-3*x)^2/((1-3*x)^3 - x^4)).list()

%o A099786_list(30) # _G. C. Greubel_, Sep 04 2019

%o (GAP) a:=[1,3,9,27];; for n in [5..30] do a[n]:=9*a[n-1]-27*a[n-2] + 27*a[n-3] +a[n-4]; od; a; # _G. C. Greubel_, Sep 04 2019

%Y Cf. A003522, A097119.

%Y Cf. A099780, A099781, A099782, A099783, A099784, A099785, A099787.

%K easy,nonn

%O 0,2

%A _Paul Barry_, Oct 26 2004