login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A099724
Decimal expansion of Sum_{k>0} (A000040(k+1)-A000040(k))/exp(k), where A000040(k) gives the k-th prime number and exp(k) is the natural exponential of k.
0
8, 3, 8, 9, 0, 9, 8, 2, 7, 5, 9, 2, 1, 6, 4, 1, 8, 9, 3, 2, 7, 6, 7, 7, 5, 9, 3, 3, 0, 5, 4, 2, 8, 2, 3, 8, 5, 5, 1, 1, 9, 4, 0, 3, 5, 9, 7, 4, 1, 8, 4, 8, 5, 0, 9, 2, 2, 2, 5, 0, 2, 9, 3, 7, 4, 3, 3, 3, 5, 3, 7, 4, 9, 9, 4, 7, 8, 0, 3, 7, 6, 5, 1, 2, 7, 8, 7, 5, 9, 6, 8, 3, 4, 4, 9, 7, 2, 8, 8, 0, 2, 5, 3, 8, 7
OFFSET
0,1
COMMENTS
Relates the growth of a function giving the difference between successive prime numbers (A000040(n+1)-A000040(n) or A001223(n)) to the growth of the natural exponential exp(n)=e^n where e is Euler's number (A001113).
FORMULA
Equals Sum_{i >= 1} (prime(i+1) - prime(i))/exp(i).
EXAMPLE
0.8389098275921641893276775933054282385511940359741848509222502937433...
MAPLE
f:=N->sum((ithprime(n+1)-ithprime(n))/exp(n), n=1..N); evalf[106](f(1000)); evalf[106](f(2000));
MATHEMATICA
digits = 105; f[m_] := f[m] = Sum[(Prime[n + 1] - Prime[n])/Exp[n], {n, 1, m}] // RealDigits[#, 10, digits] & // First; f[digits]; f[m = 2*digits]; While[f[m] != f[m/2], m = 2 m]; f[m] (* Jean-François Alcover, Feb 21 2014 *)
PROG
(PARI) suminf(i=1, (prime(i+1) - prime(i))/exp(i)) \\ Michel Marcus, May 26 2018
CROSSREFS
KEYWORD
cons,nonn
AUTHOR
Joseph Biberstine (jrbibers(AT)indiana.edu), Nov 07 2004
STATUS
approved