login
A099724
Decimal expansion of Sum_{k>0} (A000040(k+1)-A000040(k))/exp(k), where A000040(k) gives the k-th prime number and exp(k) is the natural exponential of k.
0
8, 3, 8, 9, 0, 9, 8, 2, 7, 5, 9, 2, 1, 6, 4, 1, 8, 9, 3, 2, 7, 6, 7, 7, 5, 9, 3, 3, 0, 5, 4, 2, 8, 2, 3, 8, 5, 5, 1, 1, 9, 4, 0, 3, 5, 9, 7, 4, 1, 8, 4, 8, 5, 0, 9, 2, 2, 2, 5, 0, 2, 9, 3, 7, 4, 3, 3, 3, 5, 3, 7, 4, 9, 9, 4, 7, 8, 0, 3, 7, 6, 5, 1, 2, 7, 8, 7, 5, 9, 6, 8, 3, 4, 4, 9, 7, 2, 8, 8, 0, 2, 5, 3, 8, 7
OFFSET
0,1
COMMENTS
Relates the growth of a function giving the difference between successive prime numbers (A000040(n+1)-A000040(n) or A001223(n)) to the growth of the natural exponential exp(n)=e^n where e is Euler's number (A001113).
FORMULA
Equals Sum_{i >= 1} (prime(i+1) - prime(i))/exp(i).
EXAMPLE
0.8389098275921641893276775933054282385511940359741848509222502937433...
MAPLE
f:=N->sum((ithprime(n+1)-ithprime(n))/exp(n), n=1..N); evalf[106](f(1000)); evalf[106](f(2000));
MATHEMATICA
digits = 105; f[m_] := f[m] = Sum[(Prime[n + 1] - Prime[n])/Exp[n], {n, 1, m}] // RealDigits[#, 10, digits] & // First; f[digits]; f[m = 2*digits]; While[f[m] != f[m/2], m = 2 m]; f[m] (* Jean-François Alcover, Feb 21 2014 *)
PROG
(PARI) suminf(i=1, (prime(i+1) - prime(i))/exp(i)) \\ Michel Marcus, May 26 2018
CROSSREFS
KEYWORD
cons,nonn
AUTHOR
Joseph Biberstine (jrbibers(AT)indiana.edu), Nov 07 2004
STATUS
approved