OFFSET
0,1
COMMENTS
FORMULA
Equals Sum_{i >= 1} (prime(i+1) - prime(i))/exp(i).
EXAMPLE
0.8389098275921641893276775933054282385511940359741848509222502937433...
MAPLE
f:=N->sum((ithprime(n+1)-ithprime(n))/exp(n), n=1..N); evalf[106](f(1000)); evalf[106](f(2000));
MATHEMATICA
digits = 105; f[m_] := f[m] = Sum[(Prime[n + 1] - Prime[n])/Exp[n], {n, 1, m}] // RealDigits[#, 10, digits] & // First; f[digits]; f[m = 2*digits]; While[f[m] != f[m/2], m = 2 m]; f[m] (* Jean-François Alcover, Feb 21 2014 *)
PROG
(PARI) suminf(i=1, (prime(i+1) - prime(i))/exp(i)) \\ Michel Marcus, May 26 2018
CROSSREFS
KEYWORD
cons,nonn
AUTHOR
Joseph Biberstine (jrbibers(AT)indiana.edu), Nov 07 2004
STATUS
approved