%I #16 Jun 03 2020 10:22:07
%S 11,17,23,41,47,67,83,103,157,257,277,3407,3517,3547
%N From a 2-dimensional walk involving primes.
%C Start with 7 in the center cell. Rules: Write prime(n-1) in a cell and,
%C if Prime(n-1) == 1 mod 5, then move to upper cell, append prime(n) to the cell.
%C if Prime(n-1) == 2 mod 5, then move to right cell, append prime(n) to the cell.
%C if Prime(n-1) == 3 mod 5, then move to lower cell, append prime(n) to the cell.
%C if Prime(n-1) == 4 mod 5, then move to left cell, append prime(n) to the cell.
%C Sequence gives sequence of primes appearing in the cell to the right of center cell.
%C There are no more terms below 10^10. But two-dimensional random walks are recurrent, so this sequence is heuristically infinite. - _Charles R Greathouse IV_, Oct 18 2011
%C No more terms up to 10^12. - _Charles R Greathouse IV_, May 04 2020
%C No more terms up to 10^13. The associated position after 9999999999971 is (-3312, -57946). - _Charles R Greathouse IV_, May 29 2020
%e .................. 13 ...... 13 ......... 13 .............. 13 .................
%e 7 -> 7 : 11 -> 7 : 11 -> 7 : 11,17 -> 7 : 11,17 : 19 -> 7 : 11,17,23 : 19 -> ...
%o (PARI) upto(lim)=my(x=-1,y=0,p=7);forprime(q=11,lim,if(p%5>2,if(p%5==3,y--,x--),if(p%5==1,y++,x++));if(!x&&!y,print1(q", "));p=q) \\ _Charles R Greathouse IV_, Oct 18 2011
%Y Cf. A096447.
%K nonn,more
%O 1,1
%A _Yasutoshi Kohmoto_, Nov 06 2004
%E a(8)-a(14) from _Sean A. Irvine_, Oct 18 2011