login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numerator of (1-1/n)^k - (1-k/n), 2<=k<=n, triangle read by rows.
2

%I #3 Mar 30 2012 18:50:48

%S 1,1,8,1,11,81,1,14,131,1024,1,17,193,1829,15625,1,20,267,2974,29849,

%T 279936,1,23,353,4519,52113,561399,5764801,1,26,451,6524,84997,

%U 1034270,11994247,134217728,1,29,561,9049,131441,1782969,23046721,287420489

%N Numerator of (1-1/n)^k - (1-k/n), 2<=k<=n, triangle read by rows.

%C Denominator A099615.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/BernoulliInequality.html">Bernoulli Inequality</a>

%e Triangle (1-1/n)^k - (1-k/n) starts, 2<=k<=n<=6:

%e n=2: .................. 1/4,

%e n=3: .............. 1/9 ____ 8/27,

%e n=4: ......... 1/16 ___ 11/64 ___ 81/256,

%e n=5: ..... 1/25 __ 14/125 __ 131/625 __ 1024/3125,

%e n=6: . 1/36 _ 17/216 _ 193/1296 _ 1829/7776 _ 15625/46656.

%Y Cf. A099613.

%K nonn,tabl,frac

%O 1,3

%A _Reinhard Zumkeller_, Oct 25 2004