Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Jul 26 2022 01:35:53
%S 1,2,4,9,19,39,80,163,330,666,1341,2695,5409,10846,21733,43526,87140,
%T 174409,349007,698291,1396988,2794571,5590014,11181306,22364485,
%U 44731715,89467453,178940802,357890245,715793154,1431604868,2863236937
%N Expansion of (1-x)/((1-2*x)*(1-x-x^3)).
%C Row sums of number triangle A099567.
%H G. C. Greubel, <a href="/A099568/b099568.txt">Table of n, a(n) for n = 0..1000</a>
%H Denis Neiter and Amsha Proag, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL19/Proag/proag3.html">Links Between Sums Over Paths in Bernoulli's Triangles and the Fibonacci Numbers</a>, Journal of Integer Sequences, Vol. 19 (2016), Article 16.8.3.
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (3,-2,1,-2).
%F a(n) = 3*a(n-1) - 2*a(n-2) + a(n-3) - 2*a(n-4).
%F a(n) = Sum_{k=0..n} Sum_{j=0..floor(n/3)} binomial(n-2*j, k+j).
%t LinearRecurrence[{3,-2,1,-2}, {1,2,4,9}, 40] (* _G. C. Greubel_, Jul 26 2022 *)
%o (PARI) Vec((1-x)/((1-2*x)*(1-x-x^3)) + O(x^40)) \\ _Michel Marcus_, Oct 18 2016
%o (Magma) [n le 4 select Round(9^((n-1)/3)) else 3*Self(n-1) -2*Self(n-2) +Self(n-3) -2*Self(n-4): n in [1..41]]; // _G. C. Greubel_, Jul 26 2022
%o (SageMath)
%o @CachedFunction
%o def a(n): # a = A099568
%o if (n<4): return round(9^(n/3))
%o else: return 3*a(n-1) -2*a(n-2) + a(n-3) - 2*a(n-4)
%o [a(n) for n in (0..40)] # _G. C. Greubel_, Jul 26 2022
%Y Cf. A099567.
%K easy,nonn
%O 0,2
%A _Paul Barry_, Oct 22 2004