%I #5 Jul 11 2023 08:17:37
%S 2,2,4,4,9,15,24,24,27,28,33,42,47,56,60,62,70,75,78,87,96,103,106,
%T 114,115,121,122,127,128,129,133,137,146,155,164,164,171,177,181,190,
%U 198,204,206,215,217,220,224,224,228,237,245,253,261,262,269,278,280,282
%N Sum of the first n decimal places of zeta(3) (Apery's constant). This does not include the initial "1." of zeta(3).
%F a(n)=A099536(n+1)-1
%e The decimal places of zeta(3) are 2020569031... so the sums are 2, 2+0, 2+0+2,
%e 2+0+2+0, 2+0+2+0+5, ... which gives 2, 2, 4, 4, 9,...
%t Accumulate[Rest[RealDigits[Zeta[3],10,60][[1]]]] (* _Harvey P. Dale_, May 23 2021 *)
%Y Cf. A099535 for version when including all digits of zeta(3).
%Y Apéry's number or Apéry's constant zeta(3) is A002117. - _N. J. A. Sloane_, Jul 11 2023
%K base,easy,nonn
%O 1,1
%A Mark Hudson (mrmarkhudson(AT)hotmail.com), Oct 22 2004