login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that 2^k - k^2 is a semiprime.
2

%I #29 Jul 08 2023 18:09:33

%S 11,13,15,21,23,37,39,41,43,47,49,55,67,75,103,105,133,147,153,161,

%T 163,177,201,209,221,239,249,263,311,335,355,397,413,421,437,447,583,

%U 617,775,807

%N Numbers k such that 2^k - k^2 is a semiprime.

%C The smaller prime factor of the 125-digit semiprime 2^413 - 413^2 has 40 digits; for the 127-digit semiprime 2^421 - 421^2 the smaller prime factor has 45 digits. The next term is >= 583. - _Hugo Pfoertner_, Oct 14 2007

%C The factorization of the 176-decimal-digit composite 2^583 - 583^2 using SNFS in YAFU took 55000 seconds on 4 cores of an i5-2400 CPU @ 3.10GHz. a(38) >= 617. - _Hugo Pfoertner_, Jul 23 2019

%C a(41) >= 827. - _Hugo Pfoertner_, Jul 26 2019

%H Dario Alpern, <a href="https://www.alpertron.com.ar/ECM.HTM">Factorization using the Elliptic Curve Method</a>.

%H factordb, <a href="http://factordb.com/index.php?query=2%5E583-583%5E2">Status of 2^583-583^2 in factordb.com</a>.

%H factordb, <a href="http://factordb.com/index.php?query=2%5E617-617%5E2">Status of 2^617-617^2 in factordb.com</a>.

%H factordb, <a href="http://factordb.com/index.php?query=2%5E827-827%5E2">Status of 2^827-827^2 in factordb.com</a>.

%H YAFU, <a href="https://sourceforge.net/projects/yafu/">Automated integer factorization</a>.

%e a(1) = 11 because 2^11 - 11^2 = 1927 = 41*47.

%Y Cf. A024012 (2^n-n^2), A099482 (semiprimes of the form 2^n-n^2), A072180 (2^n-n^2 is prime), A075896 (primes of the form 2^n-n^2).

%K nonn,more,hard

%O 1,1

%A _Hugo Pfoertner_, Oct 18 2004

%E More terms from _Hugo Pfoertner_, Oct 14 2007

%E a(37)-a(40) from _Hugo Pfoertner_, Jul 26 2019