Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Apr 15 2021 04:51:08
%S 2,1,3,1,1,4,3,6,1,1,4,2,9,4,9,14,4,1,3,4,36,5,25,4,10,4,18,3,21,9,9,
%T 21,16,65,12,8,51,1,22,2,30,6,10,63,1,30,15,3,10,1,22,57,202,4,3,53,1,
%U 34,12,10,22,29,28,31,7,6,70,29,16,94,37,51,30,56,19,23,70,50,99,16,34,5
%N Least k such that k*2^n*(2^n-1) - 1 is prime.
%C Least k such that k*A020522(n)-1 is prime. - _Michel Marcus_, Apr 13 2021
%H Robert Israel, <a href="/A099478/b099478.txt">Table of n, a(n) for n = 1..2090</a>
%e 1*2^6*(2^6-1) - 1 = 4031 = 29*139
%e 2*2^6*(2^6-1) - 1 = 8063 = 11*733
%e 3*2^6*(2^6-1) - 1 = 12095 = 5*2419
%e 4*2^6*(2^6-1) - 1 = 16127, which is prime, so a(6)=4.
%p f:= proc(n) local c,k;
%p c:= 2^n*(2^n-1);
%p for k from 1 do if isprime(c*k-1) then return k fi od
%p end proc:
%p map(f, [$1..100]); # _Robert Israel_, Apr 12 2021
%o (PARI) a(n) = my(k=1); while(!isprime(k*2^n*(2^n-1) - 1), k++); k; \\ _Michel Marcus_, Apr 13 2021
%Y Cf. A020522.
%K nonn
%O 1,1
%A _Pierre CAMI_, Nov 18 2004