Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #32 Sep 13 2018 11:26:30
%S 1,0,-2,-3,-1,3,5,2,-4,-7,-3,5,9,4,-6,-11,-5,7,13,6,-8,-15,-7,9,17,8,
%T -10,-19,-9,11,21,10,-12,-23,-11,13,25,12,-14,-27,-13,15,29,14,-16,
%U -31,-15,17,33,16,-18,-35,-17,19,37,18,-20,-39,-19,21,41,20,-22
%N A sequence generated from the Quadrifoil (flat knot).
%C a(3*n), n = 1,2,3... = 2*n + 1, unsigned. Odifreddi, p. 135 states: "Since the trefoil has polynomial x^2 - x + 1 and the quadrifoil (or flat knot) is the sum of two trefoils, its polynomial is (x^2 - x + 1) = x^4 - 2*x^3 + 3*x^2 - 2*x + 1."
%D P. Odifreddi, "The Mathematical Century; The 30 Greatest Problems of the Last 100 Years", Princeton University Press, page 135.
%H Alois P. Heinz, <a href="/A099471/b099471.txt">Table of n, a(n) for n = 0..10000</a>
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (2,-3,2,-1).
%F a(n) = M^n * [1 1 1 1], rightmost term; where M = the 4 X 4 companion matrix to the Quadrifoil polynomial x^4 - 2*x^3 + 3*x^2 - 2*x + 1: [0 1 0 0 / 0 0 1 0 / 0 0 0 1 / -1 2 -3 2].
%F G.f.: -(x^3-x^2+2*x-1) / (x^2-x+1)^2. - _Colin Barker_, May 25 2013
%F a(n+1) = 1 - sum(A101950(n-k+2, k+2), k=0..floor(n/2)) - _Johannes W. Meijer_, Aug 06 2013
%F From _A.H.M. Smeets_, Sep 13 2018 (Start)
%F a(3*k) = a(3*k-1) + a(3*k+1) for k > 0.
%F a(3*k) = (-1)^k*(2*k+1) for k >= 0.
%F a(3*k+1) = (-1)^k*k for k >= 0.
%F a(3*k+2) = (-1)^(k+1)*(k+2) for k >= 0. (End)
%e a(6) = 5 since M^6 * [1 1 1 1] = [ -3 -1 3 5].
%p a:= proc(n) local m, r; r:= 1+irem(n, 6, 'm');
%p [1, 0, -2, -3, -1, 3][r] +m*[4, 2, -2, -4, -2, 2][r]
%p end:
%p seq(a(n), n=0..80); # _Alois P. Heinz_, May 25 2013
%t Table[((9 + 6 n) Cos[Pi n/3] - 5 Sqrt[3] Sin[Pi n/3])/9, {n, 0, 20}] (* _Vladimir Reshetnikov_, Sep 09 2016 *)
%Y Cf. A099470.
%K sign,easy
%O 0,3
%A _Gary W. Adamson_, Oct 17 2004