login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A099470
A sequence generated from the Quadrifoil.
3
-1, -2, -1, 2, 4, 2, -3, -6, -3, 4, 8, 4, -5, -10, -5, 6, 12, 6, -7, -14, -7, 8, 16, 8, -9, -18, -9, 10, 20, 10, -11, -22, -11, 12, 24, 12, -13, -26, -13, 14, 28, 14, -15, -30, -15, 16, 32, 16, -17, -34, -17, 18, 36, 18, -19, -38, -19, 20, 40, 20, -21, -42
OFFSET
1,2
COMMENTS
a(3n - 1) = 2n (unsigned; n = 1, 2, 3...). In A099471, a(3n) = (2n + 1), unsigned. Odifreddi, p. 135: "Since the trefoil has polynomial x^2 - x + 1 and the quadrifoil (or flat knot) is the sum of two trefoils, its polynomial is (x^2 - x + 1)^2 = x^4 - 2x^3 + 3x^2 - 2x + 1."
Coefficient of x of the characteristic polynomial of the n X n matrix with 1's along the superdiagonal, main diagonal and subdiagonal. - John M. Campbell, Sep 14 2011
REFERENCES
Piergiorgio Odifreddi, "The Mathematical Century; The 30 Greatest Problems of the Last 100 Years", Princeton University Press, 2000, page 135.
FORMULA
M = the 4 X 4 companion matrix to the Quadrafoil polynomial x^4 - 2x^3 + 3x^2 - 2x + 1: [0 1 0 0 / 0 0 1 0 / 0 0 0 1 / -1 2 -3 2]. a(n) = rightmost term in M^n * [1 0 0 0].
O.g.f.: -x/(x^2-x+1)^2. a(n) = 2*a(n-1)-3*a(n-2)+2*a(n-3)-a(n-4) = -A099254(n-1). - R. J. Mathar, Apr 06 2008, Apr 23 2009
EXAMPLE
a(7) = -3 since M^7 * [1 0 0 0] = [2 4 2 -3].
MATHEMATICA
Table[Coefficient[CharacteristicPolynomial[Array[KroneckerDelta[#1, #2] + KroneckerDelta[#1, #2+1] + KroneckerDelta[#1, #2-1] &, {n, n}], x], x], {n, 75}] (* John M. Campbell, Sep 14 2011 *)
Table[(3 n Cos[Pi n/3] - Sqrt[3] (3 n + 4) Sin[Pi n/3])/9, {n, 20}] (* Vladimir Reshetnikov, Sep 08 2016 *)
LinearRecurrence[{2, -3, 2, -1}, {-1, -2, -1, 2}, 90] (* Vincenzo Librandi, Sep 09 2016 *)
PROG
(Magma) I:=[-1, -2, -1, 2]; [n le 4 select I[n] else 2*Self(n-1)-3*Self(n-2)+2*Self(n-3)-Self(n-4): n in [1..80]]; // Vincenzo Librandi, Sep 09 2016
CROSSREFS
Sequence in context: A261880 A119538 A068309 * A099254 A186731 A180108
KEYWORD
sign,easy
AUTHOR
Gary W. Adamson, Oct 17 2004
STATUS
approved