login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of 1/(1 - 5x + 7x^2).
4

%I #22 Jan 01 2024 11:06:24

%S 1,5,18,55,149,360,757,1265,1026,-3725,-25807,-102960,-334151,-950035,

%T -2411118,-5405345,-10148899,-12907080,6506893,122884025,568871874,

%U 1984171195,5938752857,15804565920,37451559601,76625836565,120968265618,68460472135,-504475498651

%N Expansion of 1/(1 - 5x + 7x^2).

%C Associated to the knot 7_7 by the modified Chebyshev transform A(x)-> (1/(1+x^2)^2)A(x/(1+x^2)). See A099451 and A099452.

%H Dror Bar-Natan, <a href="http://katlas.org/wiki/Main_Page">The Rolfsen Knot Table</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (5,-7).

%F a(n) = sum{k=0..floor(n/2), binomial(n-k, k)(-7)^k*5^(n-2k)}.

%F a(n) = 5*a(n-1) - 7*a(n-2), a(0)=1, a(1)=5. - _Philippe Deléham_, Nov 15 2008

%t CoefficientList[Series[1/(1-5x+7x^2),{x,0,40}],x] (* or *) LinearRecurrence[ {5,-7},{1,5},40] (* _Harvey P. Dale_, Oct 21 2016 *)

%o (Sage) [lucas_number1(n,5,7) for n in range(1, 30)] # _Zerinvary Lajos_, Apr 22 2009

%K easy,sign

%O 0,2

%A _Paul Barry_, Oct 16 2004