login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Arithmetic derivative of Euler's totient function phi(n).
2

%I #9 Sep 30 2017 23:47:54

%S 0,0,1,1,4,1,5,4,5,4,7,4,16,5,12,12,32,5,21,12,16,7,13,12,24,16,21,16,

%T 32,12,31,32,24,32,44,16,60,21,44,32,68,16,41,24,44,13,25,32,41,24,80,

%U 44,56,21,68,44,60,32,31,32,92,31,60,80,112,24,61,80,48,44,59,44,156,60

%N Arithmetic derivative of Euler's totient function phi(n).

%D See A003415

%H Michel Marcus, <a href="/A099310/b099310.txt">Table of n, a(n) for n = 1..5000</a>

%F a(n) = A003415(A000010(n))

%t dn[0]=0; dn[1]=0; dn[n_]:=Module[{f=Transpose[FactorInteger[n]]}, If[PrimeQ[n], 1, Plus@@(n*f[[2]]/f[[1]])]]; Table[dn[EulerPhi[n]], {n, 100}]

%o (GAP)

%o A099310:= Concatenation([0,0],List(List(List([3..10^3], n->Phi(n)),Factors),i->Product(i)*Sum(i,j->1/j))); # _Muniru A Asiru_, Sep 27 2017

%o (PARI) ad(n) = sum(i=1, #f=factor(n)~, n/f[1, i]*f[2, i]);

%o a(n) = ad(eulerphi(n)); \\ _Michel Marcus_, Sep 29 2017

%Y Cf. A003415 (arithmetic derivative of n).

%K nonn

%O 1,5

%A _T. D. Noe_, Oct 12 2004