login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of -Ei(-1), negated exponential integral at -1.
45

%I #55 Jun 22 2024 07:58:49

%S 2,1,9,3,8,3,9,3,4,3,9,5,5,2,0,2,7,3,6,7,7,1,6,3,7,7,5,4,6,0,1,2,1,6,

%T 4,9,0,3,1,0,4,7,2,9,3,4,0,6,9,0,8,2,0,7,5,7,7,9,7,8,6,1,3,0,7,3,5,6,

%U 8,6,9,8,5,5,9,1,4,1,5,4,4,7,2,2,2,1,0,2,5,1,0,3,5,1,3,7,2,4,9,9,5,4,7,5,8

%N Decimal expansion of -Ei(-1), negated exponential integral at -1.

%C The divergent series g(x=1,m) = 1^m*1! - 2^m*2! + 3^m*3! - 4^m*4! + ..., m=>-1, is closely related to the value of -Ei(-1). We discovered that g(x=1,m) = (-1)^m*(A040027(m) - A000110(m+1)*Ei(1,1)*exp(1)), see A163940. We observe that Ei(1,1) = E(1,1,1) = -Ei(-1) is the constant given above and that Ei(1,1)*exp(1) = A073003 is Gompertz's constant. - _Johannes W. Meijer_, Oct 16 2009

%H G. C. Greubel, <a href="/A099285/b099285.txt">Table of n, a(n) for n = 0..10000</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ExponentialIntegral.html">Exponential Integral</a>

%F -Ei(-n) = Integral_{a=n..oo} ( Integral_{b=1..oo} 1/e^(a*b) db ) da , n>0 (According to Mathematica). - _Mats Granvik_, May 25 2013

%F Equals the difference between the absolute values of A239069 and A001620. - _R. J. Mathar_, Mar 07 2016

%F From _Amiram Eldar_, Aug 01 2020: (Start)

%F Equals Integral_{x=1..oo} log(x)/exp(x) dx.

%F Equals Integral_{x=0..oo} exp(-exp(x)) dx.

%F Equals Integral_{x=0..oo} x*exp(x-exp(x)) dx. (End)

%F From _Peter Bala_, Jun 17 2024: (Start)

%F Equals lim_{n -> oo} Integral_{x = 0..n} x^(n-1)/(1 + x)^n dx = lim_{n -> oo} ( log(n+1) + Sum_{k = 0..n-2} (-1)^(n-k-1)* binomial(n-1, k)*((n + 1)^(k+1-n) - 1)/(k + 1 - n) ).

%F Alternatively, equals lim_{n -> oo} Sum_{k >= n} (n/(n + 1))^k/k = lim_{n -> oo} ( log(1/(1 - x)) - Sum_{k = 1..n-1} x^k/k ), where x = n/(n+1).

%F More generally, for alpha > 0, -Ei(-alpha) = lim_{n -> oo} Integral_{x = 0..n/alpha} x^(n-1)/(1 + x)^n dx. (End)

%e 0.219383934395520273677163775460121649031047293406908207577978613...

%e With n := 10^6, Integral_{x = 0..n} x^(n-1)/(1 + x)^n dx = 0.21938(43...). - _Peter Bala_, Jun 19 2024

%p Digits:=105: evalf(-Ei(-1)); evalf(Ei(1,1)); # _Johannes W. Meijer_, Oct 16 2009

%t RealDigits[ ExpIntegralE[1, 1], 10, 105][[1]]

%o (PARI) eint1(1, 1) \\ _Michel Marcus_, Aug 01 2020

%Y Cf. A073003, A091725, A245780.

%K cons,nonn

%O 0,1

%A _Robert G. Wilson v_, Oct 08 2004

%E Definition corrected by _Johannes W. Meijer_, Jul 26 2009

%E Corrected Name (minus 1, not 1), _Stanislav Sykora_, May 18 2012