login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Bisection of Motzkin numbers A001006.
7

%I #64 May 03 2024 05:28:51

%S 1,4,21,127,835,5798,41835,310572,2356779,18199284,142547559,

%T 1129760415,9043402501,73007772802,593742784829,4859761676391,

%U 40002464776083,330931069469828,2750016719520991,22944749046030949,192137918101841817,1614282136160911722

%N Bisection of Motzkin numbers A001006.

%C a(n) is the number of grand Motzkin paths from (0,0) to (2n+2,0) that avoid vertices (k,0) for all odd k and end on a down step. - _Alexander Burstein_, May 11 2021

%H Vincenzo Librandi, <a href="/A099250/b099250.txt">Table of n, a(n) for n = 0..200</a>

%H Veronika Irvine, <a href="http://hdl.handle.net/1828/7495">Lace Tessellations: A mathematical model for bobbin lace and an exhaustive combinatorial search for patterns</a>, PhD Dissertation, University of Victoria, 2016.

%H Veronika Irvine, Stephen Melczer, and Frank Ruskey, <a href="https://arxiv.org/abs/1804.08725">Vertically constrained Motzkin-like paths inspired by bobbin lace</a>, arXiv:1804.08725 [math.CO], 2018.

%F a(n) = (2/Pi)*Integral_{x=-1..1} (1+2*x)^(2*n+1)*sqrt(1-x^2). [_Peter Luschny_, Sep 11 2011]

%F Recurrence: (n+1)*(2*n+3)*a(n) = (14*n^2+23*n+6)*a(n-1) + 3*(14*n^2-37*n+21)*a(n-2) - 27*(n-2)*(2*n-3)*a(n-3). - _Vaclav Kotesovec_, Oct 17 2012

%F a(n) ~ 3^(2*n+5/2)/(4*sqrt(2*Pi)*n^(3/2)). - _Vaclav Kotesovec_, Oct 17 2012

%F G.f.: (1/x) * Series_Reversion( x*(1+x) / ( (1+2*x)^2 * (1+x+x^2) ) ). - _Paul D. Hanna_, Oct 03 2014

%F From _Peter Bala_, Apr 20 2024: (Start)

%F a(n) = Sum_{k = 0..2*n+1} (-1)^(k+1) * binomial(2*n+1, k)*Catalan(k+1).

%F a(n) = Sum_{k = 0..2*n+1} (-1)^k * binomial(2*n+1, k)*Catalan(k+1)*3^(2*n-k+1).

%F (4*n - 1)*(2*n + 3)*(n + 1)*a(n) = 2*(4*n + 1)*(10*n^2 + 5*n - 3)*a(n-1) - 9*(4*n + 3)*(2*n - 1)*(n - 1)*a(n-2) with a(0) = 1 and a(1) = 4. (End)

%p G:=(1-x-(1-2*x-3*x^2)^(1/2))/(2*x^2): GG:=series(G,x=0,60): seq(coeff(GG,x^(2*n-1)),n=1..24); # _Emeric Deutsch_

%p M := proc(n) option remember; `if`(n<2,1,(3*(n-1)*M(n-2)+(2*n+1)*M(n-1))/(n+2)) end: A099250 := n -> M(2*n+1):

%p seq(A099250(i),i=0..20); # _Peter Luschny_, Sep 11 2011

%t Take[CoefficientList[Series[(1-x-(1-2x-3x^2)^(1/2))/(2x^2), {x,0,60}], x], {2,-1,2}] (* _Harvey P. Dale_, Sep 11 2011 *)

%t Table[Hypergeometric2F1[-1/2-n, -n, 2, 4], {n, 0, 30}] (* _Jean-François Alcover_, Apr 03 2015 *)

%t MotzkinNumber = DifferenceRoot[Function[{y, n}, {(-3n-3)*y[n] + (-2n-5)*y[n+1] + (n+4)*y[n+2] == 0, y[0] == 1, y[1] == 1}]];

%t Table[MotzkinNumber[2n+1], {n, 0, 20}] (* _Jean-François Alcover_, Oct 27 2021 *)

%o (PARI) a(n)=sum(j=0,3*n+4, binomial(j,2*j-5*n-7)*binomial(3*n+4,j))/(3*n+4); /* _Joerg Arndt_, Mar 09 2013 */

%o (PARI) x='x+O('x^66); v=Vec((1-x-(1-2*x-3*x^2)^(1/2))/(2*x^2)); vector(#v\2,n,v[2*n]) \\ _Joerg Arndt_, May 12 2013

%o (PARI) {a(n)=polcoeff(1/x*serreverse( x*(1+x)/((1+2*x)^2*(1+x+x^2) +x^2*O(x^n)) ),n)}

%o for(n=0,30,print1(a(n),", ")) \\ _Paul D. Hanna_, Oct 03 2014

%Y Cf. A001006, A026945, A048990.

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_, Nov 16 2004

%E More terms from _Emeric Deutsch_, Nov 17 2004