Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Oct 10 2013 16:24:00
%S 1,1,2,1,3,3,3,1,4,2,2,4,2,4,4,1,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,1,6,3,
%T 3,2,3,2,2,3,3,2,2,3,2,3,3,6,3,2,2,3,2,3,3,6,2,3,3,6,3,6,6,1,7,7,7,7,
%U 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7
%N Denominator of relative frequency of number of ones in binary representation of n.
%C Numerator = A099245;
%C a(n)*A000120(n)=A099245(n)*A070939(n);
%C for n>0: a(n) = A070939(n)/A099244(n);
%C a(n) = 1 iff n = A000225(k).
%H Reinhard Zumkeller, <a href="/A099246/b099246.txt">Table of n, a(n) for n = 0..10000</a>
%H <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>
%F a(n) = if n=0 then 1 else A070939(n)/GCD(A070939(n), A000120(n)).
%o (Haskell)
%o import Data.Ratio ((%), denominator)
%o a099246 n = denominator $ (a000120 n) % (a070939 n)
%o -- _Reinhard Zumkeller_, Oct 10 2013
%Y Cf. A007088.
%K nonn,frac
%O 0,3
%A _Reinhard Zumkeller_, Oct 08 2004