login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Greatest common divisor of length of n in binary representation and its number of ones.
6

%I #36 Jul 16 2023 02:05:46

%S 1,1,2,1,1,1,3,1,2,2,1,2,1,1,4,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,5,1,2,2,

%T 3,2,3,3,2,2,3,3,2,3,2,2,1,2,3,3,2,3,2,2,1,3,2,2,1,2,1,1,6,1,1,1,1,1,

%U 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1

%N Greatest common divisor of length of n in binary representation and its number of ones.

%C For k >= 2, n in the range [2^(k-1)..2^k - 2] have binary length k but fewer than k 1's, thus a(n) is a proper divisor of k, and if k is a prime then a(n) = 1. - _Ctibor O. Zizka_, Jun 19 2021

%H Reinhard Zumkeller, <a href="/A099244/b099244.txt">Table of n, a(n) for n = 1..10000</a>

%H <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>.

%F a(n) = gcd(A070939(n), A000120(n)).

%F a(A000225(n)) = n and a(m) < n for m < A000225(n).

%t a[n_] := GCD[BitLength[n], DigitCount[n, 2, 1]]; Array[a, 100] (* _Amiram Eldar_, Jul 16 2023 *)

%o (Haskell)

%o a099244 n = gcd (a070939 n) (a000120 n)

%o -- _Reinhard Zumkeller_, Oct 10 2013

%o (Python)

%o from math import gcd

%o def a(n): b = bin(n)[2:]; return gcd(len(b), b.count('1'))

%o print([a(n) for n in range(1, 106)]) # _Michael S. Branicky_, Jun 17 2021

%Y Cf. A000120, A000225, A007088, A070939, A099245, A099246, A099247, A099248, A099249.

%K base,easy,nonn

%O 1,3

%A _Reinhard Zumkeller_, Oct 08 2004