|
|
A099232
|
|
a(n) = 2*a(n-1) + 2*a(n-2) - 3*a(n-3).
|
|
3
|
|
|
0, 1, 2, 6, 13, 32, 72, 169, 386, 894, 2053, 4736, 10896, 25105, 57794, 133110, 306493, 705824, 1625304, 3742777, 8618690, 19847022, 45703093, 105244160, 242353440, 558085921, 1285146242, 2959404006, 6814842733, 15693054752, 36137582952
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
Partial sums of A006130 (with leading zero).
Specify a triangle by T(n,0) = T(n+1,1) = A001045(n) and T(n,k) = T(n-1,k-1) + T(n-1,k-2) + T(n-2,k-2) otherwise. Then T(n,n)= a(n-1). - J. M. Bergot, May 24 2013
|
|
LINKS
|
Table of n, a(n) for n=0..30.
Index entries for linear recurrences with constant coefficients, signature (2,2,-3).
|
|
FORMULA
|
G.f.: x/((1-x)*(1-x-3*x^2)).
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k+1)*3^k.
a(n) = (1/2 + sqrt(13)/2)^n*(1/6 + 7*sqrt(13)/78) + (1/6 - 7*sqrt(13)/78)*(1/2 - sqrt(13)/2)^n - 1/3.
a(n+1) = Sum_{k=0..n} C(k+1,n-k+1)*3^(n-k). - Paul Barry, May 21 2006
a(n) = a(n-1) + 3*a(n-2) + 1, n > 1. - Gary Detlefs, Jun 21 2010
G.f.: Q(0)*x/(2-2*x), where Q(k) = 1 + 1/(1 - x*(4*k+1 + 3*x)/( x*(4*k+3 + 3*x) + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Sep 09 2013
|
|
CROSSREFS
|
Cf. A001045, A006130.
Sequence in context: A263899 A062424 A258344 * A280758 A053562 A003039
Adjacent sequences: A099229 A099230 A099231 * A099233 A099234 A099235
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
Paul Barry, Oct 08 2004
|
|
STATUS
|
approved
|
|
|
|