login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Quintisection and binomial transform of 1/(1-x^4-x^5).
10

%I #11 Sep 21 2017 11:01:10

%S 1,1,1,1,2,7,22,57,128,264,529,1079,2290,5022,11148,24633,53824,

%T 116472,250880,540536,1167937,2531061,5494247,11928731,25880583,

%U 56101768,121544393,263289438,570427339,1236159756,2679343966,5807782301

%N Quintisection and binomial transform of 1/(1-x^4-x^5).

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-4,1).

%F G.f.: (1-x)^4/((1-x)^5-x^4); a(n)=sum{k=0..floor(5n/4), binomial(k, 5n-4k)}; a(n)=A017827(5n).

%F a(n)=sum{k=0..floor((n+1)/2), binomial(n+k, 5k)}; - _Paul Barry_, May 09 2005

%t LinearRecurrence[{5, -10, 10, -4, 1}, {1, 1, 1, 1, 2}, 32] (* _Jean-François Alcover_, Sep 21 2017 *)

%K easy,nonn

%O 0,5

%A _Paul Barry_, Sep 29 2004