Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #43 Dec 05 2023 18:52:37
%S 2,3,4,5,7,8,16,19,29,47,59,163,257,421,937,947,1493,1901,6689,8087,
%T 9679,28753,79043,129127,145969,165799,168677,170413,172243,278321,
%U 552283
%N Indices of prime companion Pell numbers, divided by 2 (A001333).
%C Note that for A001333(n) to be prime, the index n must be prime or a power of 2. The indices greater than 421 yield probable primes.
%C Numbers n for which ((1+sqrt(2))^n + (1-sqrt(2))^n)/2 is prime. - _Artur Jasinski_, Dec 10 2006
%D F. Le Lionnais, Les Nombres Remarquables. Paris: Hermann, p. 62, 1983.
%H J. B. Cosgrave and K. Dilcher, <a href="https://fq.math.ca/Papers1/51-2/CosgraveDilcher-1.pdf">Pairs of reciprocal quadratic congruences involving primes</a>, Fib. Quart. 51 (2) (2013) 98, after Theorem 3.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PellNumber.html">Pell Number</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/IntegerSequencePrimes.html">Integer Sequence Primes </a>
%t lst={}; a=1; b=1; Do[c=a+2b; a=b; b=c; If[PrimeQ[c], AppendTo[lst, n]], {n, 2, 10000}]; lst
%t (* Second program: *)
%t Do[If[PrimeQ[Expand[((1 + Sqrt[2])^n + (1 - Sqrt[2])^n)/2]], Print[n]], {n, 0, 1000}] (* _Artur Jasinski_, Dec 10 2006 *)
%o (PARI) isok(n) = isprime(polchebyshev(n, 1, I)/I^n); \\ _Michel Marcus_, Dec 07 2018
%Y Cf. A002203 (companion Pell numbers), A086395 (primes in A001333), A096650 (indices of prime Pell numbers).
%Y Cf. A005850.
%K hard,nonn
%O 1,1
%A _T. D. Noe_, Sep 24 2004
%E a(24) from _Eric W. Weisstein_, May 22 2006
%E a(25) from _Eric W. Weisstein_, Aug 29 2006
%E a(26) from _Eric W. Weisstein_, Nov 11 2006
%E a(27) from _Eric W. Weisstein_, Nov 26 2006
%E a(28) from _Eric W. Weisstein_, Dec 10 2006
%E a(29) from _Eric W. Weisstein_, Jan 25 2007
%E a(30) from _Robert Price_, Dec 07 2018
%E a(31) from _Robert Price_, Dec 05 2023